Correct a MIPS/BFD linker issue with dynamic symbol and corresponding
GOT entry values being redirected to lazy binding stubs where the stubs
section has been discarded by assigning to the `/DISCARD/' output
section in the linker script used. The issue manifests itself by the
values entered being relative to the absolute section, which is what any
discarded sections are internally assigned in the linker.
For the `stub-dynsym-2.s' piece of code included as a test case with
this change this issue results in the dynamic symbol table and the GOT
looking like:
Symbol table '.dynsym' contains 3 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000010 0 FUNC GLOBAL DEFAULT UND bar
2: 00000000 0 FUNC GLOBAL DEFAULT UND foo
Primary GOT:
Canonical gp value: 00097ff0
Reserved entries:
Address Access Initial Purpose
00090000 -32752(gp) 00000000 Lazy resolver
00090004 -32748(gp) 80000000 Module pointer (GNU extension)
Global entries:
Address Access Initial Sym.Val. Type Ndx Name
00090008 -32744(gp) 00000010 00000010 FUNC UND bar
0009000c -32740(gp) 00000000 00000000 FUNC UND foo
if assembled to regular MIPS code, or:
Symbol table '.dynsym' contains 3 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000d 0 FUNC GLOBAL DEFAULT UND bar
2: 00000001 0 FUNC GLOBAL DEFAULT UND foo
Primary GOT:
Canonical gp value: 00097ff0
Reserved entries:
Address Access Initial Purpose
00090000 -32752(gp) 00000000 Lazy resolver
00090004 -32748(gp) 80000000 Module pointer (GNU extension)
Global entries:
Address Access Initial Sym.Val. Type Ndx Name
00090008 -32744(gp) 0000000d 0000000d FUNC UND bar
0009000c -32740(gp) 00000001 00000001 FUNC UND foo
if assembled to microMIPS code. Symbol values and GOT entries record
the offset into the inexistent stubs section and the ISA bit rather than
zero, which would be the case if a lazy binding stub was not used for
other reasons, such as the value of the symbol being taken for a purpose
other than making a function call (e.g. an R_MIPS_GOT16 relocation).
Correct the issue by refraining from redirecting symbols to lazy binding
stubs if the stubs section is going to be discarded.
bfd/
* elfxx-mips.c (_bfd_mips_elf_adjust_dynamic_symbol): Don't set
`->needs_lazy_stub' if the stubs output section is the absolute
section.
ld/
* testsuite/ld-mips-elf/stub-dynsym-2.dd: New test.
* testsuite/ld-mips-elf/stub-dynsym-2.gd: New test.
* testsuite/ld-mips-elf/stub-dynsym-2.sd: New test.
* testsuite/ld-mips-elf/stub-dynsym-discard-2.gd: New test.
* testsuite/ld-mips-elf/stub-dynsym-discard-2.sd: New test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-2.dd: New test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-2.gd: New test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-2.sd: New test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-insn32-2.dd: New
test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-insn32-2.gd: New
test.
* testsuite/ld-mips-elf/stub-dynsym-micromips-insn32-2.sd: New
test.
* testsuite/ld-mips-elf/stub-dynsym-2.ld: New test linker
script.
* testsuite/ld-mips-elf/stub-dynsym-discard-2.ld: New test
linker script.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
BFD is an object file library. It permits applications to use the
same routines to process object files regardless of their format.
BFD is used by the GNU debugger, assembler, linker, and the binary
utilities.
The documentation on using BFD is scanty and may be occasionally
incorrect. Pointers to documentation problems, or an entirely
rewritten manual, would be appreciated.
There is some BFD internals documentation in doc/bfdint.texi which may
help programmers who want to modify BFD.
BFD is normally built as part of another package. See the build
instructions for that package, probably in a README file in the
appropriate directory.
BFD supports the following configure options:
--target=TARGET
The default target for which to build the library. TARGET is
a configuration target triplet, such as sparc-sun-solaris.
--enable-targets=TARGET,TARGET,TARGET...
Additional targets the library should support. To include
support for all known targets, use --enable-targets=all.
--enable-64-bit-bfd
Include support for 64 bit targets. This is automatically
turned on if you explicitly request a 64 bit target, but not
for --enable-targets=all. This requires a compiler with a 64
bit integer type, such as gcc.
--enable-shared
Build BFD as a shared library.
--with-mmap
Use mmap when accessing files. This is faster on some hosts,
but slower on others. It may not work on all hosts.
Report bugs with BFD to bug-binutils@gnu.org.
Patches are encouraged. When sending patches, always send the output
of diff -u or diff -c from the original file to the new file. Do not
send default diff output. Do not make the diff from the new file to
the original file. Remember that any patch must not break other
systems. Remember that BFD must support cross compilation from any
host to any target, so patches which use ``#ifdef HOST'' are not
acceptable. Please also read the ``Reporting Bugs'' section of the
gcc manual.
Bug reports without patches will be remembered, but they may never get
fixed until somebody volunteers to fix them.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.