mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-19 00:59:15 +08:00

This commit aims to not make use of -Wmissing-prototypes when compiling with g++. Use of -Wmissing-prototypes was added with this commit: commit a0761e34f054767de6d6389929d27e9015fb299b Date: Wed Mar 11 15:15:12 2020 -0400 gdb: enable -Wmissing-prototypes warning Because clang can provide helpful warnings with this flag. Unfortunately, g++ doesn't accept this flag, and will give this warning: cc1plus: warning: command line option ‘-Wmissing-prototypes’ is valid for C/ObjC but not for C++ In theory the fact that this flag is not supported should be detected by the configure check in gdbsupport/warning.m4, but for users of ccache, this check doesn't work due to a long standing ccache issue: https://github.com/ccache/ccache/issues/738 The ccache problem is that -W... options are reordered on the command line, and so -Wmissing-prototypes is seen before -Werror. Usually this doesn't matter, but the above warning (about the flag not being valid) is issued before the -Werror flag is processed, and so is not fatal. There have been two previous attempts to fix this that I'm aware of. The first is: https://sourceware.org/pipermail/gdb-patches/2021-September/182148.html In this attempt, instead of just relying on a compile to check if a flag is valid, the proposal was to both compile and link. As linking doesn't go through ccache, we don't suffer from the argument reordering problem, and the link phase will correctly fail when using -Wmissing-prototypes with g++. The configure script will then disable the use of this flag. This approach was rejected, and the suggestion was to only add the -Wmissing-prototypes flag if we are compiling with gcc. The second attempt, attempts this approach, and can be found here: https://sourceware.org/pipermail/gdb-patches/2021-November/183076.html This attempt only adds the -Wmissing-prototypes flag is the value of GCC is not 'yes'. This feels like it is doing the right thing, unfortunately, the GCC flag is really a 'is gcc like' flag, not a strict, is gcc check. As such, GCC is set to 'yes' for clang, which would mean the flag was not included for clang or gcc. The entire point of the original commit was to add this flag for clang, so clearly the second attempt is not sufficient either. In this new attempt I have added gdbsupport/compiler-type.m4, this file defines AM_GDB_COMPILER_TYPE. This macro sets the variable GDB_COMPILER_TYPE to either 'gcc', 'clang', or 'unknown'. In future the list of values might be extended to cover other compilers, if this is ever useful. I've then modified gdbsupport/warning.m4 to only add the problematic -Wmissing-prototypes flag if GDB_COMPILER_TYPE is not 'gcc'. I've tested this with both gcc and clang and see the expected results, gcc no longer attempts to use the -Wmissing-prototypes flag, while clang continues to use it. When compiling using ccache, I am no longer seeing the warning.
README for GDBserver & GDBreplay by Stu Grossman and Fred Fish Introduction: This is GDBserver, a remote server for Un*x-like systems. It can be used to control the execution of a program on a target system from a GDB on a different host. GDB and GDBserver communicate using the standard remote serial protocol. They communicate via either a serial line or a TCP connection. For more information about GDBserver, see the GDB manual: https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html Usage (server (target) side): First, you need to have a copy of the program you want to debug put onto the target system. The program can be stripped to save space if needed, as GDBserver doesn't care about symbols. All symbol handling is taken care of by the GDB running on the host system. To use the server, you log on to the target system, and run the `gdbserver' program. You must tell it (a) how to communicate with GDB, (b) the name of your program, and (c) its arguments. The general syntax is: target> gdbserver COMM PROGRAM [ARGS ...] For example, using a serial port, you might say: target> gdbserver /dev/com1 emacs foo.txt This tells GDBserver to debug emacs with an argument of foo.txt, and to communicate with GDB via /dev/com1. GDBserver now waits patiently for the host GDB to communicate with it. To use a TCP connection, you could say: target> gdbserver host:2345 emacs foo.txt This says pretty much the same thing as the last example, except that we are going to communicate with the host GDB via TCP. The `host:2345' argument means that we are expecting to see a TCP connection to local TCP port 2345. (Currently, the `host' part is ignored.) You can choose any number you want for the port number as long as it does not conflict with any existing TCP ports on the target system. This same port number must be used in the host GDB's `target remote' command, which will be described shortly. Note that if you chose a port number that conflicts with another service, GDBserver will print an error message and exit. On some targets, GDBserver can also attach to running programs. This is accomplished via the --attach argument. The syntax is: target> gdbserver --attach COMM PID PID is the process ID of a currently running process. It isn't necessary to point GDBserver at a binary for the running process. Usage (host side): You need an unstripped copy of the target program on your host system, since GDB needs to examine it's symbol tables and such. Start up GDB as you normally would, with the target program as the first argument. (You may need to use the --baud option if the serial line is running at anything except 9600 baud.) Ie: `gdb TARGET-PROG', or `gdb --baud BAUD TARGET-PROG'. After that, the only new command you need to know about is `target remote'. It's argument is either a device name (usually a serial device, like `/dev/ttyb'), or a HOST:PORT descriptor. For example: (gdb) target remote /dev/ttyb communicates with the server via serial line /dev/ttyb, and: (gdb) target remote the-target:2345 communicates via a TCP connection to port 2345 on host `the-target', where you previously started up GDBserver with the same port number. Note that for TCP connections, you must start up GDBserver prior to using the `target remote' command, otherwise you may get an error that looks something like `Connection refused'. Building GDBserver: See the `configure.srv` file for the list of host triplets you can build GDBserver for. Building GDBserver for your host is very straightforward. If you build GDB natively on a host which GDBserver supports, it will be built automatically when you build GDB. You can also build just GDBserver: % mkdir obj % cd obj % path-to-toplevel-sources/configure --disable-gdb % make all-gdbserver (If you have a combined binutils+gdb tree, you may want to also disable other directories when configuring, e.g., binutils, gas, gold, gprof, and ld.) If you prefer to cross-compile to your target, then you can also build GDBserver that way. For example: % export CC=your-cross-compiler % path-to-topevel-sources/configure --disable-gdb % make all-gdbserver Using GDBreplay: A special hacked down version of GDBserver can be used to replay remote debug log files created by GDB. Before using the GDB "target" command to initiate a remote debug session, use "set remotelogfile <filename>" to tell GDB that you want to make a recording of the serial or tcp session. Note that when replaying the session, GDB communicates with GDBreplay via tcp, regardless of whether the original session was via a serial link or tcp. Once you are done with the remote debug session, start GDBreplay and tell it the name of the log file and the host and port number that GDB should connect to (typically the same as the host running GDB): $ gdbreplay logfile host:port Then start GDB (preferably in a different screen or window) and use the "target" command to connect to GDBreplay: (gdb) target remote host:port Repeat the same sequence of user commands to GDB that you gave in the original debug session. GDB should not be able to tell that it is talking to GDBreplay rather than a real target, all other things being equal. Note that GDBreplay echos the command lines to stderr, as well as the contents of the packets it sends and receives. The last command echoed by GDBreplay is the next command that needs to be typed to GDB to continue the session in sync with the original session.