I'd like to move some things so they become methods on struct ui. But
first, I think that struct ui and the related things are big enough to
deserve their own file, instead of being scattered through top.{c,h} and
event-top.c.
Change-Id: I15594269ace61fd76ef80a7b58f51ff3ab6979bc
This patch implements a simplication that I suggested here:
https://sourceware.org/pipermail/gdb-patches/2022-March/186320.html
Currently, the interp::exec virtual method interface is such that
subclass implementations must catch exceptions and then return them
via normal function return.
However, higher up the in chain, for the CLI we get to
interpreter_exec_cmd, which does:
for (i = 1; i < nrules; i++)
{
struct gdb_exception e = interp_exec (interp_to_use, prules[i]);
if (e.reason < 0)
{
interp_set (old_interp, 0);
error (_("error in command: \"%s\"."), prules[i]);
}
}
and for MI we get to mi_cmd_interpreter_exec, which has:
void
mi_cmd_interpreter_exec (const char *command, char **argv, int argc)
{
...
for (i = 1; i < argc; i++)
{
struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
if (e.reason < 0)
error ("%s", e.what ());
}
}
Note that if those errors are reached, we lose the original
exception's error code. I can't see why we'd want that.
And, I can't see why we need to have interp_exec catch the exception
and return it via the normal return path. That's normally needed when
we need to handle propagating exceptions across C code, like across
readline or ncurses, but that's not the case here.
It seems to me that we can simplify things by removing some
try/catch-ing and just letting exceptions propagate normally.
Note, the "error in command" error shown above, which only exists in
the CLI interpreter-exec command, is only ever printed AFAICS if you
run "interpreter-exec console" when the top level interpreter is
already the console/tui. Like:
(gdb) interpreter-exec console "foobar"
Undefined command: "foobar". Try "help".
error in command: "foobar".
You won't see it with MI's "-interpreter-exec console" from a top
level MI interpreter:
(gdb)
-interpreter-exec console "foobar"
&"Undefined command: \"foobar\". Try \"help\".\n"
^error,msg="Undefined command: \"foobar\". Try \"help\"."
(gdb)
nor with MI's "-interpreter-exec mi" from a top level MI interpreter:
(gdb)
-interpreter-exec mi "-foobar"
^error,msg="Undefined MI command: foobar",code="undefined-command"
^done
(gdb)
in both these cases because MI's -interpreter-exec just does:
error ("%s", e.what ());
You won't see it either when running an MI command with the CLI's
"interpreter-exec mi":
(gdb) interpreter-exec mi "-foobar"
^error,msg="Undefined MI command: foobar",code="undefined-command"
(gdb)
This last case is because MI's interp::exec implementation never
returns an error:
gdb_exception
mi_interp::exec (const char *command)
{
mi_execute_command_wrapper (command);
return gdb_exception ();
}
Thus I think that "error in command" error is pretty pointless, and
since it simplifies things to not have it, the patch just removes it.
The patch also ends up addressing an old FIXME.
Change-Id: I5a6432a80496934ac7127594c53bf5221622e393
Approved-By: Tom Tromey <tromey@adacore.com>
Approved-By: Kevin Buettner <kevinb@redhat.com>
The Debugger Adapter Protocol is a JSON-RPC protocol that IDEs can use
to communicate with debuggers. You can find more information here:
https://microsoft.github.io/debug-adapter-protocol/
Frequently this is implemented as a shim, but it seemed to me that GDB
could implement it directly, via the Python API. This patch is the
initial implementation.
DAP is implemented as a new "interp". This is slightly weird, because
it doesn't act like an ordinary interpreter -- for example it doesn't
implement a command syntax, and doesn't use GDB's ordinary event loop.
However, this seemed like the best approach overall.
To run GDB in this mode, use:
gdb -i=dap
The DAP code will accept JSON-RPC messages on stdin and print
responses to stdout. GDB redirects the inferior's stdout to a new
pipe so that output can be encapsulated by the protocol.
The Python code uses multiple threads to do its work. Separate
threads are used for reading JSON from the client and for writing JSON
to the client. All GDB work is done in the main thread. (The first
implementation used asyncio, but this had some limitations, and so I
rewrote it to use threads instead.)
This is not a complete implementation of the protocol, but it does
implement enough to demonstrate that the overall approach works.
There is a rudimentary test suite. It uses a JSON parser written in
pure Tcl. This parser is under the same license as Tcl itself, so I
felt it was acceptable to simply import it into the tree.
There is also a bit of documentation -- just documenting the new
interpreter name.