This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Since commit 7c6f27129631 ("gdb: make get_discrete_bounds check for
non-constant range bounds"), subscripting flexible array member fails:
struct no_size
{
int n;
int items[];
};
(gdb) p *ns
$1 = {n = 3, items = 0x5555555592a4}
(gdb) p ns->items[0]
Cannot access memory at address 0xfffe555b733a0164
(gdb) p *((int *) 0x5555555592a4)
$2 = 101 <--- we would expect that
(gdb) p &ns->items[0]
$3 = (int *) 0xfffe5559ee829a24 <--- wrong address
Since the flexible array member (items) has an unspecified size, the array type
created for it in the DWARF doesn't have dimensions (this is with gcc 9.3.0,
Ubuntu 20.04):
0x000000a4: DW_TAG_array_type
DW_AT_type [DW_FORM_ref4] (0x00000038 "int")
DW_AT_sibling [DW_FORM_ref4] (0x000000b3)
0x000000ad: DW_TAG_subrange_type
DW_AT_type [DW_FORM_ref4] (0x00000031 "long unsigned int")
This causes GDB to create a range type (TYPE_CODE_RANGE) with a defined
constant low bound (dynamic_prop with kind PROP_CONST) and an undefined
high bound (dynamic_prop with kind PROP_UNDEFINED).
value_subscript gets both bounds of that range using
get_discrete_bounds. Before commit 7c6f27129631, get_discrete_bounds
didn't check the kind of the dynamic_props and would just blindly read
them as if they were PROP_CONST. It would return 0 for the high bound,
because we zero-initialize the range_bounds structure. And it didn't
really matter in this case, because the returned high bound wasn't used
in the end.
Commit 7c6f27129631 changed get_discrete_bounds to return a failure if
either the low or high bound is not a constant, to make sure we don't
read a dynamic prop that isn't a PROP_CONST as a PROP_CONST. This
change made get_discrete_bounds start to return a failure for that
range, and as a result would not set *lowp and *highp. And since
value_subscript doesn't check get_discrete_bounds' return value, it just
carries on an uses an uninitialized value for the low bound. If
value_subscript did check the return value of get_discrete_bounds, we
would get an error message instead of a bogus value. But it would still
be a bug, as we wouldn't be able to print the flexible array member's
elements.
Looking at value_subscript, we see that the low bound is always needed,
but the high bound is only needed if !c_style. So, change
value_subscript to use get_discrete_low_bound and
get_discrete_high_bound separately. This fixes the case described
above, where the low bound is known but the high bound isn't (and is not
needed). This restores the original behavior without accessing a
dynamic_prop in a wrong way.
A test is added. In addition to the case described above, a case with
an array member of size 0 is added, which is a GNU C extension that
existed before flexible array members were introduced. That case
currently fails when compiled with gcc <= 8. gcc <= 8 produces DWARF
similar to the one shown above, while gcc 9 adds a DW_AT_count of 0 in
there, which makes the high bound known. A case where an array member
of size 0 is the only member of the struct is also added, as that was
how PR 28675 was originally reported, and it's an interesting corner
case that I think could trigger other funny bugs.
Question about the implementation: in value_subscript, I made it such
that if the low or high bound is unknown, we fall back to zero. That
effectively makes it the same as it was before 7c6f27129631. But should
we instead error() out?
gdb/ChangeLog:
PR 26875, PR 26901
* gdbtypes.c (get_discrete_low_bound): Make non-static.
(get_discrete_high_bound): Make non-static.
* gdbtypes.h (get_discrete_low_bound): New declaration.
(get_discrete_high_bound): New declaration.
* valarith.c (value_subscript): Only fetch high bound if
necessary.
gdb/testsuite/ChangeLog:
PR 26875, PR 26901
* gdb.base/flexible-array-member.c: New test.
* gdb.base/flexible-array-member.exp: New test.
Change-Id: I832056f80e6c56f621f398b4780d55a3a1e299d7
get_discrete_bounds currently has three possible return values (see its
current doc for details). It appears that for all callers, it would be
sufficient to have a boolean "worked" / "didn't work" return value.
Change the return type of get_discrete_bounds to bool and adjust all
callers. Doing so simplifies the following patch.
gdb/ChangeLog:
* gdbtypes.h (get_discrete_bounds): Return bool, adjust all
callers.
* gdbtypes.c (get_discrete_bounds): Return bool.
Change-Id: Ie51feee23c75f0cd7939742604282d745db59172
Instead of returning a boolean status and returning the value through a
pointer, return an optional that does both jobs. This helps in the
following patches, and I think it is an improvement in general.
gdb/ChangeLog:
* ada-lang.c (ada_value_slice_from_ptr): Adjust.
(ada_value_slice): Adjust.
(pos_atr): Adjust.
* gdbtypes.c (get_discrete_bounds): Adjust.
(discrete_position): Return optional.
* gdbtypes.h (discrete_position): Return optional.
Change-Id: I758dbd8858b296ee472ed39ec35db1dbd624a5ae
This logically connects this function to the object it inspects.
gdb/ChangeLog:
* gdbtypes.h (struct type) <fixed_point_scaling_factor>: New method,
replacing fixed_point_scaling_factor. All callers updated
throughout this project.
(fixed_point_scaling_factor): Delete declaration.
* gdbtypes.c (type::fixed_point_scaling_factor): Replaces
fixed_point_scaling_factor. Adjust implementation accordingly.
As suggested by Simon, to logically connect this function to
the object it inspects.
Note that, logically, this method should be "const". Unfortunately,
the implementation iterates on struct type objects starting with "this",
and thus trying to declare the method "const" triggers a compilation
error.
gdb/ChangeLog:
* gdbtypes.h (struct type) <fixed_point_type_base_type> New method,
replacing the fixed_point_type_base_type function. All callers
updated throughout this project.
(fixed_point_type_base_type): Remove declaration.
* gdbtypes.c (type::fixed_point_type_base_type): Replaces
fixed_point_type_base_type. Adjust implementation accordingly.
This is one step further towards the removal of all these macros.
gdb/ChangeLog:
* gdbtypes.h (struct type) <fixed_point_info, set_fixed_point_info>:
New methods.
(INIT_FIXED_POINT_SPECIFIC): Adjust.
(TYPE_FIXED_POINT_INFO): Delete macro.
(allocate_fixed_point_type_info): Change return type to void.
* gdbtypes.c (copy_type_recursive): Replace the use of
TYPE_FIXED_POINT_INFO by a call to the fixed_point_info method.
(fixed_point_scaling_factor): Likewise.
(allocate_fixed_point_type_info): Change return type to void.
Adjust implementation accordingly.
* dwarf2/read.c (finish_fixed_point_type): Replace the use of
TYPE_FIXED_POINT_INFO by a call to the fixed_point_info method.
Obvious change from int to bool. I took the opportunity to move the doc
to the header file.
gdb/ChangeLog:
* gdbtypes.h (get_array_bounds): Return bool, adjust some
callers. Move doc here.
* gdbtypes.c (get_array_bounds): Return bool
Change-Id: I8ed20298cb0927963c1f09b345966533d5ed06e2
This commit introduces a new kind of type, meant to describe
fixed-point types, using a new code added specifically for
this purpose (TYPE_CODE_FIXED_POINT).
It then adds handling of fixed-point base types in the DWARF reader.
And finally, as a first step, this commit adds support for printing
the value of fixed-point type objects.
Note that this commit has a known issue: Trying to print the value
of a fixed-point object with a format letter (e.g. "print /x NAME")
causes the wrong value to be printed because the scaling factor
is not applied. Since the fix for this issue is isolated, and
this is not a regression, the fix will be made in a pach of its own.
This is meant to simplify review and archeology.
Also, other functionalities related to fixed-point type handling
(ptype, arithmetics, etc), will be added piecemeal as well, for
the same reasons (faciliate reviews and archeology). Related to this,
the testcase gdb.ada/fixed_cmp.exp is adjusted to compile the test
program with -fgnat-encodings=all, so as to force the use of GNAT
encodings, rather than rely on the compiler's default to use them.
The intent is to enhance this testcase to also test the pure DWARF
approach using -fgnat-encodings=minimal as soon as the corresponding
suport gets added in. Thus, the modification to the testcase is made
in a way that it prepares this testcase to be tested in both modes.
gdb/ChangeLog:
* ada-valprint.c (ada_value_print_1): Add fixed-point type handling.
* dwarf2/read.c (get_dwarf2_rational_constant)
(get_dwarf2_unsigned_rational_constant, finish_fixed_point_type)
(has_zero_over_zero_small_attribute): New functions.
read_base_type, set_die_type): Add fixed-point type handling.
* gdb-gdb.py.in: Add fixed-point type handling.
* gdbtypes.c: #include "gmp-utils.h".
(create_range_type, set_type_code): Add fixed-point type handling.
(init_fixed_point_type): New function.
(is_integral_type, is_scalar_type): Add fixed-point type handling.
(print_fixed_point_type_info): New function.
(recursive_dump_type, copy_type_recursive): Add fixed-point type
handling.
(fixed_point_type_storage): New typedef.
(fixed_point_objfile_key): New static global.
(allocate_fixed_point_type_info, is_fixed_point_type): New functions.
(fixed_point_type_base_type, fixed_point_scaling_factor): New
functions.
* gdbtypes.h: #include "gmp-utils.h".
(enum type_code) <TYPE_SPECIFIC_FIXED_POINT>: New enum.
(union type_specific) <fixed_point_info>: New field.
(struct fixed_point_type_info): New struct.
(INIT_FIXED_POINT_SPECIFIC, TYPE_FIXED_POINT_INFO): New macros.
(init_fixed_point_type, is_fixed_point_type)
(fixed_point_type_base_type, fixed_point_scaling_factor)
(allocate_fixed_point_type_info): Add declarations.
* valprint.c (generic_val_print_fixed_point): New function.
(generic_value_print): Add fixed-point type handling.
* value.c (value_as_address, unpack_long): Add fixed-point type
handling.
gdb/testsuite/ChangeLog:
* gdb.ada/fixed_cmp.exp: Force compilation to use -fgnat-encodings=all.
* gdb.ada/fixed_points.exp: Add fixed-point variables printing tests.
* gdb.ada/fixed_points/pck.ads, gdb.ada/fixed_points/pck.adb:
New files.
* gdb.ada/fixed_points/fixed_points.adb: Add use of package Pck.
* gdb.dwarf2/dw2-fixed-point.c, gdb.dwarf2/dw2-fixed-point.exp:
New files.
PR symtab/25470 points out that the Zig programming language allows
integers of various bit sizes (including zero), not just sizes that
are a multiple of 8.
This is supported in DWARF by applying both a byte size and a
DW_AT_bit_size.
This patch adds support for this feature to integer and boolean types.
Other base types are not handled -- for floating-point types, this
didn't seem to make sense, and for character types I didn't see much
need. (These can be added later if desired.)
I've also added support for DW_AT_data_bit_offset at the same time. I
don't know whether the Zig compiler requires this, but it was
described in the same section in the DWARF standard and was easy to
add.
A new test case is supplied, using the DWARF assembler.
gdb/ChangeLog
2020-09-23 Tom Tromey <tom@tromey.com>
PR symtab/25470:
* value.c (unpack_long, pack_long, pack_unsigned_long): Handle bit
offset and bit size.
* printcmd.c (print_scalar_formatted): Handle zero-length
integer.
(print_scalar_formatted): Use bit_size_differs_p.
* gdbtypes.h (enum type_specific_kind) <TYPE_SPECIFIC_INT>: New
constant.
(union type_specific): <int_stuff>: New member.
(struct type) <bit_size_differs_p, bit_size, bit_offset>: New
methods.
* gdbtypes.c (init_integer_type, init_boolean_type): Initialize
TYPE_SPECIFIC_FIELD.
(recursive_dump_type, copy_type_recursive): Update.
* dwarf2/read.c (read_base_type): Handle DW_AT_bit_size and
DW_AT_data_bit_offset.
gdb/testsuite/ChangeLog
2020-09-23 Tom Tromey <tom@tromey.com>
* gdb.dwarf2/intbits.exp: New file.
* gdb.dwarf2/intbits.c: New file.
Remove it, use the `type::instance_flags` method everywhere.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INSTANCE_FLAGS): Remove, replace all uses
with `type::instance_flags`.
Change-Id: I3653108b712e6186529cb0102e2b70247bbcabbe
These methods now take/return a type_instance_flags instead of a raw
integer, so rename them accordingly.
gdb/ChangeLog:
* c-typeprint.c (c_type_print_modifier): Adjust to rename.
* gdbtypes.c (address_space_name_to_int): Rename to ...
(address_space_name_to_type_instance_flags): ... this.
(address_space_int_to_name): Rename to ...
(address_space_type_instance_flags_to_name): ... this.
* gdbtypes.h (address_space_name_to_int): Rename to ...
(address_space_name_to_type_instance_flags): ... this.
(address_space_int_to_name): Rename to ...
(address_space_type_instance_flags_to_name): ... this.
* type-stack.c (type_stack::insert): Adjust to rename.
* type-stack.h (type_stack::insert): Likewise.
A later patch in this series will rewrite enum_flags fixing some API
holes. That would cause build failures around code using
type_instance_flags. Or rather, that should be using it, but wasn't.
This patch fixes it by using type_instance_flags throughout instead of
plain integers.
Note that we can't make the seemingly obvious change to struct
type::instance_flags:
- unsigned instance_flags : 9;
+ ENUM_BITFIELD (type_instance_flag_value) instance_flags : 9;
Because G++ complains then that 9 bits isn't sufficient for holding
all values of type_instance_flag_value.
So the patch adds an type::instance_flags() method, which takes care
of casting appropriately, and adds a separate type::set_instance_flags
method, following the pattern of the ongoing TYPE_XXX macro
elimination. This converts uses of TYPE_INSTANCE_FLAGS to
type::instance_flags() in the places where the code was already being
touched, but there are still many references to the
TYPE_INSTANCE_FLAGS macro left behind. Those could/should be fully
replaced at some point.
gdb/ChangeLog:
* avr-tdep.c (avr_address_class_type_flags): Return
type_instance_flags.
(avr_address_class_type_flags_to_name): Take a
type_instance_flags.
(avr_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
* d-lang.c (build_d_types): Use type::set_instance_flags.
* ft32-tdep.c (ft32_address_class_type_flags): Return
type_instance_flags.
(ft32_address_class_type_flags_to_name): Take a
type_instance_flags.
(ft32_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
(ft32_gdbarch_init): Use type::set_instance_flags.
* eval.c (fake_method::fake_method): Use type::set_instance_flags.
* gdbarch.h, gdbarch.c: Regenerate.
* gdbarch.sh (address_class_type_flags): Use type_instance_flags.
(address_class_name_to_type_flags): Use type_instance_flags and
bool.
* gdbtypes.c (address_space_name_to_int)
(address_space_int_to_name, make_qualified_type): Use
type_instance_flags.
(make_qualified_type): Use type_instance_flags and
type::set_instance_flags.
(make_type_with_address_space, make_cv_type, make_vector_type)
(check_typedef): Use type_instance_flags.
(recursive_dump_type): Cast type_instance_flags to unsigned for
printing.
(copy_type_recursive): Use type::set_instance_flags.
(gdbtypes_post_init): Use type::set_instance_flags.
* gdbtypes.h (struct type) <instance_flags>: Rename to ...
<m_instance_flags>: ... this.
<instance_flags, set_instance_flags>: New methods.
(TYPE_INSTANCE_FLAGS): Use the instance_flags method.
(SET_TYPE_INSTANCE_FLAGS): New.
(address_space_name_to_int, address_space_int_to_name)
(make_type_with_address_space): Pass flags using
type_instance_flags instead of int.
* stabsread.c (cleanup_undefined_types_noname): Use
type::set_instance_flags.
* s390-tdep.c (s390_address_class_type_flags): Return
type_instance_flags.
(s390_address_class_type_flags_to_name): Take a
type_instance_flags.
(s390_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
* type-stack.c (type_stack::follow_types): Use
type_instance_flags.
* dwarf2/read.c (read_tag_pointer_type): Use type_instance_flags.
Add the `endianity_is_not_default` and `set_endianity_is_not_default`
methods on `struct type`, in order to remove the
`TYPE_ENDIANITY_NOT_DEFAULT` macro. In this patch, the macro is changed
to use the getter, so all the call sites of the macro that are used as a
setter are changed to use the setter method directly. The next patch
will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <endianity_is_not_default,
set_endianity_is_not_default>: New methods.
(TYPE_ENDIANITY_NOT_DEFAULT): Use
type::endianity_is_not_default, change all write call sites to
use type::set_endianity_is_not_default.
Change-Id: I67acd68fcdae424d7e4a601afda78612ad5d92db
Add the `is_fixed_instance` and `set_is_fixed_instance` methods on `struct
type`, in order to remove the `TYPE_FIXED_INSTANCE` macro. In this patch, the
macro is changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The next patch
will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_fixed_instance,
set_is_fixed_instance>: New methods.
(TYPE_FIXED_INSTANCE): Use type::is_fixed_instance, change all
write call sites to use type::set_is_fixed_instance.
Change-Id: I4401d81512fab9eab4232bbea48ce6c7d586b94c
Add the `is_gnu_ifunc` and `set_is_gnu_ifunc` methods on `struct type`, in
order to remove the `TYPE_GNU_IFUNC` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_gnu_ifunc, set_is_gnu_ifunc>: New methods.
(TYPE_GNU_IFUNC): Use type::is_gnu_ifunc, change all write call sites to
use type::set_is_gnu_ifunc.
Change-Id: Ic23ba8c5b8e589d9fc368385111aa16a94e014e2
Add the `stub_is_supported` and `set_stub_is_supported` methods on `struct type`, in
order to remove the `TYPE_STUB_SUPPORTED` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <stub_is_supported, set_stub_is_supported>: New methods.
(TYPE_STUB_SUPPORTED): Use type::stub_is_supported, change all write call sites to
use type::set_stub_is_supported.
Change-Id: I4dfecf2b5df9c2b7bb8db1e9252082140adf3028
Add the `is_vector` and `set_is_vector` methods on `struct type`, in
order to remove the `TYPE_VECTOR` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_vector, set_is_vector>: New methods.
(TYPE_VECTOR): Use type::is_vector, change all write call sites to
use type::set_is_vector.
Change-Id: I415e8d169f058662e0750329bfa4017bea3ca0cb
Add the `has_varargs` and `set_has_varargs` methods on `struct type`, in
order to remove the `TYPE_VARARGS` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <has_varargs, set_has_varargs>: New methods.
(TYPE_VARARGS): Use type::has_varargs, change all write call sites to
use type::set_has_varargs.
Change-Id: I898a1093ae40808b37a7c6fced7f6fa2aae604de
Add the `is_prototyped` and `set_is_prototyped` methods on `struct
type`, in order to remove the `TYPE_PROTOTYPED` macro. In this patch,
the macro is changed to use the getter, so all the call sites of the
macro that are used as a setter are changed to use the setter method
directly. The next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_prototyped, set_is_prototyped>:
New methods.
(TYPE_PROTOTYPED): Use type::is_prototyped, change all write
call sites to use type::set_is_prototyped.
Change-Id: I6ba285250fae413f7c1bf2ffcb5a2cedc8e743da
Add the `target_is_stub` and `set_target_is_stub` methods on `struct
type`, in order to remove the `TYPE_TARGET_STUB` macro. In this patch,
the macro is changed to use the getter, so all the call sites of the
macro that are used as a setter are changed to use the setter method
directly. The next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <target_is_stub, set_target_is_stub>:
New methods.
(TYPE_TARGET_STUB): Use type::is_stub, change all write call
sites to use type::set_target_is_stub.
Change-Id: I9c71a89adc7ae8d018db9ee156f41c623be0484a
Add the `is_stub` and `set_is_stub` methods on `struct type`, in order
to remove the `TYPE_STUB` macro. In this patch, the macro is changed to
use the getter, so all the call sites of the macro that are used as a
setter are changed to use the setter method directly. The next patch
will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_stub, set_is_stub>: New methods.
(TYPE_STUB): Use type::is_stub, change all write call sites to
use type::set_is_stub.
Change-Id: Ie935e8fe72c908afd8718411e83f4ff00c386bf3
Add the `has_no_signedness` and `set_has_no_signednes` methods on `struct
type`, in order to remove the `TYPE_NOSIGN` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are used as
a setter are changed to use the setter method directly. The next patch will
remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <has_no_signedness,
set_has_no_signedness>: New methods.
(TYPE_NOSIGN): Use type::has_no_signedness, change all write
call sites to use type::set_has_no_signedness.
Change-Id: I80d8e774316d146fbd814b2928ad5392bada39d5
Add the `is_unsigned` and `set_is_unsigned` methods on `struct type`, in
order to remove the `TYPE_UNSIGNED` macro. In this patch, the
`TYPE_UNSIGNED` macro is changed to use `type::is_unsigned`, so all the
call sites that are used to set this property on a type are changed to
use the new method. The next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_unsigned, set_is_unsigned>: New
methods.
(TYPE_UNSIGNED): Use type::is_unsigned. Change all write call
sites to use type::set_is_unsigned.
Change-Id: Ib09ddce84eda160a801a8f288cccf61c8ef136bc
This adds support for the bfloat16 datatype, which can be seen as a short
version of FP32, skipping the least significant 16 bits of the mantissa.
Since the datatype is currently only supported by the AVX512 registers,
the printing of bfloat16 values is only supported for xmm, ymm and zmm
registers.
gdb/ChangeLog:
2020-09-11 Moritz Riesterer <moritz.riesterer@intel.com>
Felix Willgerodt <Felix.Willgerodt@intel.com>
* gdbarch.sh: Added bfloat16 type.
* gdbarch.c: Regenerated.
* gdbarch.h: Regenerated.
* gdbtypes.c (floatformats_bfloat16): New struct.
(gdbtypes_post_init): Add builtin_bfloat16.
* gdbtypes.h (struct builtin_type) <builtin_bfloat16>: New member.
(floatformats_bfloat16): New struct.
* i386-tdep.c (i386_zmm_type): Add field "v32_bfloat16"
(i386_ymm_type): Add field "v16_bfloat16"
(i386_gdbarch_init): Add set_gdbarch_bfloat16_format.
* target-descriptions.c (make_gdb_type): Add case TDESC_TYPE_BFLOAT16.
* gdbsupport/tdesc.cc (tdesc_predefined_types): New member bfloat16.
* gdbsupport/tdesc.h (tdesc_type_kind): New member TDESC_TYPE_BFLOAT16.
* features/i386/64bit-avx512.xml: Add bfloat16 type.
* features/i386/64bit-avx512.c: Regenerated.
* features/i386/64bit-sse.xml: Add bfloat16 type.
* features/i386/64bit-sse.c: Regenerated.
gdb/testsuite/ChangeLog:
2020-09-11 Moritz Riesterer <moritz.riesterer@intel.com>
Felix Willgerodt <Felix.Willgerodt@intel.com>
* x86-avx512bf16.c: New file.
* x86-avx512bf16.exp: Likewise.
* lib/gdb.exp (skip_avx512bf16_tests): New function.
The NULL_TYPE macro is not very useful... remove it and just use
nullptr.
gdb/ChangeLog:
* gdbtypes.h (NULL_TYPE): Remove, change all uses to nullptr.
Change-Id: Ic6215921413dad5649192b012f1a41d0a650a644
Getting the bounds of an array (or string) type is a common operation,
and is currently done through its index type:
my_array_type->index_type ()->bounds ()
I think it would make sense to let the `type::bounds` methods work for
arrays and strings, as a shorthand for this. It's natural that when
asking for the bounds of an array, we get the bounds of the range type
used as its index type. In a way, it's equivalent as the now-removed
TYPE_ARRAY_{LOWER,UPPER}_BOUND_IS_UNDEFINED and
TYPE_ARRAY_{LOWER,UPPER}_BOUND_VALUE, except it returns the
`range_bounds` object. The caller is then responsible for getting the
property it needs in it.
I updated all the spots I could find that could take advantage of this.
Note that this also makes `type::bit_stride` work on array types, since
`type::bit_stride` uses `type::bounds`. `my_array_type->bit_stride ()`
now returns the bit stride of the array's index type. So some spots
are also changed to take advantage of this.
gdb/ChangeLog:
* gdbtypes.h (struct type) <bounds>: Handle array and string
types.
* ada-lang.c (assign_aggregate): Use type::bounds on
array/string type.
* c-typeprint.c (c_type_print_varspec_suffix): Likewise.
* c-varobj.c (c_number_of_children): Likewise.
(c_describe_child): Likewise.
* eval.c (evaluate_subexp_for_sizeof): Likewise.
* f-typeprint.c (f_type_print_varspec_suffix): Likewise.
(f_type_print_base): Likewise.
* f-valprint.c (f77_array_offset_tbl): Likewise.
(f77_get_upperbound): Likewise.
(f77_print_array_1): Likewise.
* guile/scm-type.c (gdbscm_type_range): Likewise.
* m2-typeprint.c (m2_array): Likewise.
(m2_is_long_set_of_type): Likewise.
* m2-valprint.c (get_long_set_bounds): Likewise.
* p-typeprint.c (pascal_type_print_varspec_prefix): Likewise.
* python/py-type.c (typy_range): Likewise.
* rust-lang.c (rust_internal_print_type): Likewise.
* type-stack.c (type_stack::follow_types): Likewise.
* valarith.c (value_subscripted_rvalue): Likewise.
* valops.c (value_cast): Likewise.
Change-Id: I5c0c08930bffe42fd69cb4bfcece28944dd88d1f
Remove it and update all callers to use the equivalent accessor methods.
A subsequent patch will make type::bit_stride work for array types
(effectively replacing this macro), but I wanted to keep this patch a
simple mechanical change.
gdb/ChangeLog:
* gdbtypes.c (TYPE_ARRAY_BIT_STRIDE): Remove. Update all
callers to use the equivalent accessor methods.
Change-Id: I09e14bd45075f98567adce8a0b93edea7722f812
Remove the macro and add a `bit_stride` method to `struct range_bounds`,
which does the byte -> bit conversion if needed.
Add a convenience `bit_stride` method to `struct type` as well. I don't
really understand why the bit/byte stride is stored in the data
structure for bounds. Maybe it was just put there because
`range_bounds` was already a data structure specific to TYPE_CODE_RANGE
types? If the stride is indeed not related to the bounds, then I find
it more logical to do `my_range_type->bit_stride ()` than
`my_range_type->bounds ()->bit_stride ()`, hence the convenience
function on `struct type`.
gdb/ChangeLog:
* gdbtypes.h (struct range_bounds) <bit_stride>: New method.
(struct type) <bit_stride>: New method.
(TYPE_BIT_STRIDE): Remove.
* gdbtypes.c (update_static_array_size): Use type::bit_stride.
Change-Id: I6ecc1cfefdc20711fa8f188a94a05c1e116c9922
Remove the macros, use the various equivalent getters instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_ARRAY_LOWER_BOUND_VALUE,
TYPE_ARRAY_UPPER_BOUND_VALUE): Remove. Update all
callers to use the equivalent accessor methods instead.
Change-Id: I7f96d988f872170e7a2f58095832710e62b85cfd
Remove the macros, use the various equivalent getters instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED,
TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED): Remove. Update all
callers to use the equivalent accessor methods instead.
Change-Id: Ifb4c36f440b82533bde5d15a5cbb2fc91f467292
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND_KIND,
TYPE_HIGH_BOUND_KIND): Remove. Update all callers
to use dynamic_prop::kind.
Change-Id: Icb1fc761f675bfac934209f8102392504d905c44
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND_UNDEFINED,
TYPE_HIGH_BOUND_UNDEFINED): Remove. Update all callers
to get the bound property's kind and check against
PROP_UNDEFINED.
Change-Id: I6a7641ac1aa3fa7fca0c21f00556f185f2e2d68c
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND, TYPE_HIGH_BOUND): Remove. Update
all callers to use type::range_bounds followed by
dynamic_prop::{low,high}.
Change-Id: I31beeed65d94d81ac4f999244a8b859e2ee961d1