mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-16 14:45:06 +08:00
345 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
f9b677528f |
gdb: adjust comment on target_desc_info::from_user_p
Remove the stale reference to INFO, which is now "this target description info" now. Change-Id: I35dbdb089048ed7cfffe730d3134ee391b176abf |
|||
5a19bfd673 |
gdb: make target_desc_info_from_user_p a method of target_desc_info
Move the implementation over to target_desc_info. Remove the target_desc_info forward declaration in target-descriptions.h, it's no longer needed. Change-Id: Ic95060341685afe0b73af591ca6efe32f5e7e892 |
|||
79846903c6 |
gdb: change inferior::tdesc_info to non-pointer
I initially made this field a unique pointer, to have automatic memory management. But I then thought that the field didn't really need to be allocated separately from struct inferior. So make it a regular non-pointer field of inferior. Remove target_desc_info_free, as it's no longer needed. Change-Id: Ica2b97071226f31c40e86222a2f6922454df1229 |
|||
650160322c |
gdb: move target_desc_info to inferior.h
In preparation for the following patch, where struct inferior needs to "see" struct target_desc_info, move target_desc_info to the header file. I initially moved the structure to target-descriptions.h, and later made inferior.h include target-descriptions.h. This worked, but it then occured to me that target_desc_info is really an inferior property that involves a target description, so I think it makes sense to have it in inferior.h. Change-Id: I3e81d04faafcad431e294357389f3d4c601ee83d |
|||
213516ef31 |
Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023. |
|||
c8181f706f |
gdb: remove the pop_all_targets (and friends) global functions
This commit removes the global functions pop_all_targets, pop_all_targets_above, and pop_all_targets_at_and_above, and makes them methods on the inferior class. As the pop_all_targets functions will unpush each target, which decrements the targets reference count, it is possible that the target might be closed. Right now, closing a target, in some cases, depends on the current inferior being set correctly, that is, to the inferior from which the target was popped. To facilitate this I have used switch_to_inferior_no_thread within the new methods. Previously it was the responsibility of the caller to ensure that the correct inferior was selected. In a couple of places (event-top.c and top.c) I have been able to remove a previous switch_to_inferior_no_thread call. In remote_unpush_target (remote.c) I have left the switch_to_inferior_no_thread call as it is required for the generic_mourn_inferior call. |
|||
c88afe9cf5 |
Fix control-c handling on Windows
As Hannes pointed out, the Windows target-async patches broke C-c handling there. Looking into this, I found a few oddities, fixed here. First, windows_nat_target::interrupt calls GenerateConsoleCtrlEvent. I think this event can be ignored by the inferior, so it's not a great way to interrupt. Instead, using DebugBreakProcess (or a more complicated thing for Wow64) seems better. Second, windows_nat_target did not implement the pass_ctrlc method. Implementing this lets us remove the special code to call SetConsoleCtrlHandler and instead integrate into gdb's approach to C-c handling. I believe that this should also fix the race that's described in the comment that's being removed. Initially, I thought a simpler version of this patch would work. However, I think what happens is that some other library (I'm not sure what) calls SetConsoleCtrlHandler while gdb is running, and this intercepts and handles C-c -- so that the gdb SIGINT handler is not called. C-break continues to work, presumably because whatever handler is installed ignores it. This patch works around this issue by ensuring that the gdb handler always comes first. |
|||
c1dc47f53c |
Refactor code to check for terminal sharing
This refactors the code to check for terminal sharing. is_gdb_terminal is exported, and sharing_input_terminal_1 is renamed, slightly refactored, and moved to posix-hdep.c. A new Windows-specific implementation of this function is added to mingw-hdep.c. MSDN has a warning about GetConsoleProcessList This API is not recommended and does not have a virtual terminal equivalent. [...] Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API. However, we believe this isn't likely to be an issue for gdb. |
|||
7807dfae36 |
Use enum for gdbarch's call_dummy_location
This changes gdbarch to use an enum for call_dummy_location, providing a little more type safety. |
|||
bd2b40ac12 |
Change GDB to use frame_info_ptr
This changes GDB to use frame_info_ptr instead of frame_info * The substitution was done with multiple sequential `sed` commands: sed 's/^struct frame_info;/class frame_info_ptr;/' sed 's/struct frame_info \*/frame_info_ptr /g' - which left some issues in a few files, that were manually fixed. sed 's/\<frame_info \*/frame_info_ptr /g' sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace problems. The changed files were then manually checked and some 'sed' changes undone, some constructors and some gets were added, according to what made sense, and what Tromey originally did Co-Authored-By: Bruno Larsen <blarsen@redhat.com> Approved-by: Tom Tomey <tom@tromey.com> |
|||
d1d3123c7b |
gdb: constify inferior::target_is_pushed
Change-Id: Ia4143b9c63cb76e2c824ba773c66f5c5cd94b2aa |
|||
31282a8491 |
gdb: constify target_stack::is_pushed
The target_ops parameters here can be made const. Change-Id: Ibc18b17d6b21d06145251a03e68aca90538117d6 |
|||
08b8a139c9 |
Rewrite registry.h
This rewrites registry.h, removing all the macros and replacing it with relatively ordinary template classes. The result is less code than the previous setup. It replaces large macros with a relatively straightforward C++ class, and now manages its own cleanup. The existing type-safe "key" class is replaced with the equivalent template class. This approach ended up requiring relatively few changes to the users of the registry code in gdb -- code using the key system just required a small change to the key's declaration. All existing users of the old C-like API are now converted to use the type-safe API. This mostly involved changing explicit deletion functions to be an operator() in a deleter class. The old "save/free" two-phase process is removed, and replaced with a single "free" phase. No existing code used both phases. The old "free" callbacks took a parameter for the enclosing container object. However, this wasn't truly needed and is removed here as well. |
|||
a9deee17d3 |
gdb+gdbserver/Linux: avoid reading registers while going through shell
For every stop, Linux GDB and GDBserver save the stopped thread's PC, in lwp->stop_pc. This is done in save_stop_reason, in both gdb/linux-nat.c and gdbserver/linux-low.cc. However, while we're going through the shell after "run", in startup_inferior, we shouldn't be reading registers, as we haven't yet determined the target's architecture -- the shell's architecture may not even be the same as the final inferior's. In gdb/linux-nat.c, lwp->stop_pc is only needed when the thread has stopped for a breakpoint, and since when going through the shell, no breakpoint is going to hit, we could simply teach save_stop_reason to only record the stop pc when the thread stopped for a breakpoint. However, in gdbserver/linux-low.cc, lwp->stop_pc is used in more cases than breakpoint hits (e.g., it's used in tracepoints & the "while-stepping" feature). So to avoid GDB vs GDBserver divergence, we apply the same approach to both implementations. We set a flag in the inferior (process in GDBserver) whenever it is being nursed through the shell, and when that flag is set, save_stop_reason bails out early. While going through the shell, we'll only ever get process exits (normal or signalled), random signals, and exec events, so nothing is lost. Change-Id: If0f01831514d3a74d17efd102875de7d2c6401ad |
|||
6f5d514f91 |
gdb: replace inferior::waiting_for_vfork_done with inferior::thread_waiting_for_vfork_done
The inferior::waiting_for_vfork_done flag indicates that some thread in that inferior is waiting for a vfork-done event. Subsequent patches will need to know which thread precisely is waiting for that event. Replace the boolean flag (waiting_for_vfork_done) with a thread_info pointer (thread_waiting_for_vfork_done). I think there is a latent buglet in that waiting_for_vfork_done is currently not reset on inferior exec or exit. I could imagine that if a thread in the parent process calls exec or exit while another thread of the parent process is waiting for its vfork child to exec or exit, we could end up with inferior::waiting_for_vfork_done without a thread actually waiting for a vfork-done event anymore. And since that flag is checked in resume_1, things could misbehave there. Since the new field points to a thread_info object, and those are destroyed on exec or exit, it could be worse now since we could try to access freed memory, if thread_waiting_for_vfork_done were to point to a stale thread_info. To avoid this, clear the field in infrun_inferior_exit and infrun_inferior_execd. Change-Id: I31b847278613a49ba03fc4915f74d9ceb228fdce |
|||
d43bd54d54 |
gdb/mi: fix regression in mi -add-inferior command
Prior to the multi-target support commit: commit 5b6d1e4fa4fc6827c7b3f0e99ff120dfa14d65d2 Date: Fri Jan 10 20:06:08 2020 +0000 Multi-target support When a new inferior was added using the MI -add-inferior command, the new inferior would be using the same target as all the other inferiors. This makes sense, GDB only supported a single target stack at a time. After the above commit, each inferior has its own target stack. To maintain backward compatibility, for the CLI add-inferior command, when a new inferior is added the above commit has the new inferior inherit a copy of the target stack from the current inferior. Unfortunately, this same backward compatibility is missing for the MI. This commit fixes this oversight. Now, when the -add-inferior MI command is used, the new inferior will inherit a copy of the target stack from the current inferior. |
|||
e6b3636709 |
gdb: add a symbol* argument to get_return_value
Add an argument to the get_return_value function to indicate the symbol of the function the debuggee is returning from. This will be used by the following patch. Since the function return type can be deduced from the symbol remove the value_type argument which becomes redundant. No user visible change after this patch. Tested on x86_64-linux. Change-Id: Idf1279f1f7199f5022738a6679e0fa63fbd22edc Co-authored-by: Simon Marchi <simon.marchi@polymtl.ca> |
|||
4a94e36819 |
Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script. |
|||
4e93ea6e67 |
gdb: make inferior::m_terminal an std::string
Same idea as the previous patch, but for m_terminal. Change-Id: If9367d5db8c976a4336680adca4ea5bc31ab64d2 |
|||
11bd012ed2 |
gdb: make inferior::m_cwd an std::string
Same idea as the previous patch, but for m_cwd. To keep things consistent across the board, change get_inferior_cwd as well, which is shared with GDBserver. So update the related GDBserver code too. Change-Id: Ia2c047fda738d45f3d18bc999eb67ceb8400ce4e |
|||
fd2dec2a45 |
gdb: make inferior::m_args an std::string
With the current code, both a NULL pointer and an empty string can mean "no arguments". We don't need this distinction. Changing to a string has the advantage that there is now a single state for that (an empty string), which makes the code a bit simpler in my opinion. Change-Id: Icdc622820f7869478791dbaa84b4a1c7fec21ced |
|||
90cc31c9e5 |
gdb: add setter/getter for inferior cwd
Add cwd/set_cwd to the inferior class, remove set_inferior_args. Keep get_inferior_args, because it is used from fork_inferior, in shared code. The cwd could eventually be passed as a parameter eventually, though, I think that would be cleaner. Change-Id: Ifb72ea865d7e6f9a491308f0d5c1595579d8427e |
|||
e51695253e |
gdb: add setter/getter for inferior arguments
Add args/set_args to the inferior class, remove the set_inferior_args and get_inferior_args functions, that would just be wrappers around them. Change-Id: If87d52f3402ce08be26c32897ae8915d9f6d1ea3 |
|||
a69e37dc2b |
gdb: remove inferior::{argc,argv}
There are currently two states that the inferior args can be stored. The main one is the `args` field, where they are stored as a single string. The other one is the `argc`/`argv` fields. This last one is only used for arguments passed in GDB's command line. And the only outcome is that when get_inferior_args is called, `argc`/`argv` are serialized into `args`. So really, `argc`/`argv` is just a staging area before moving the arguments in `args`. Simplify this by only keeping the `args` field. Change set_inferior_args_vector to immediately serialize the arguments into `args`, work that would be done in get_inferior_args later anyway. The only time where this work would be "wasted" is when the user passes some arguments on the command line, but does not end up running the program. But that just seems unlikely. And it's not that much work. Change-Id: Ica0b9859397c095f6530350c8fb3c36905f2044a |
|||
12be796ca8 |
gdb: make all_inferiors_safe actually work
The test gdb.threads/fork-plus-threads.exp fails since 08bdefb58b78 ("gdb: make inferior_list use intrusive_list"): FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left Looking at the log, we see that we are left with a bunch of inferiors in the detach-on-fork=off case: info inferiors^M Num Description Connection Executable ^M * 1 <null> <snip>/fork-plus-threads ^M 2 <null> <snip>/fork-plus-threads ^M 3 <null> <snip>/fork-plus-threads ^M 4 <null> <snip>/fork-plus-threads ^M 5 <null> <snip>/fork-plus-threads ^M 6 <null> <snip>/fork-plus-threads ^M 7 <null> <snip>/fork-plus-threads ^M 8 <null> <snip>/fork-plus-threads ^M 9 <null> <snip>/fork-plus-threads ^M 10 <null> <snip>/fork-plus-threads ^M 11 <null> <snip>/fork-plus-threads ^M (gdb) FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left when we expect to have just one. The problem is prune_inferiors not pruning inferiors. And this is caused by all_inferiors_safe not actually iterating on inferiors. The current implementation: inline all_inferiors_safe_range all_inferiors_safe () { return {}; } default-constructs an all_inferiors_safe_range, which default-constructs an all_inferiors_safe_iterator as its m_begin field, which default-constructs a all_inferiors_iterator. A default-constructed all_inferiors_iterator is an end iterator, which means we have constructed an (end,end) all_inferiors_safe_range. We actually need to pass down the list on which we want to iterator (that is the inferior_list global), so that all_inferiors_iterator's first constructor is chosen. We also pass nullptr as the proc_target filter. In this case, we don't do any filtering, but if in the future all_inferiors_safe needed to allow filtering on process target (like all_inferiors does), we could pass down a process target pointer. basic_safe_iterator's constructor needs to be changed to allow constructing the wrapped iterator with multiple arguments, not just one. With this, gdb.threads/fork-plus-threads.exp is passing once again for me. Change-Id: I650552ede596e3590c4b7606ce403690a0278a01 |
|||
922cc93d5d |
gdb: maintain ptid -> thread map, optimize find_thread_ptid
When debugging a large number of threads (thousands), looking up a thread by ptid_t using the inferior::thread_list linked list can add up. Add inferior::thread_map, an std::unordered_map indexed by ptid_t, and change the find_thread_ptid function to look up a thread using std::unordered_map::find, instead of iterating on all of the inferior's threads. This should make it faster to look up a thread from its ptid. Change-Id: I3a8da0a839e18dee5bb98b8b7dbeb7f3dfa8ae1c Co-Authored-By: Pedro Alves <pedro@palves.net> |
|||
a66f729819 |
gdb: maintain per-process-target list of resumed threads with pending wait status
Looking up threads that are both resumed and have a pending wait status to report is something that we do quite often in the fast path and is expensive if there are many threads, since it currently requires walking whole thread lists. The first instance is in maybe_set_commit_resumed_all_targets. This is called after handling each event in fetch_inferior_event, to see if we should ask targets to commit their resumed threads or not. If at least one thread is resumed but has a pending wait status, we don't ask the targets to commit their resumed threads, because we want to consume and handle the pending wait status first. The second instance is in random_pending_event_thread, where we want to select a random thread among all those that are resumed and have a pending wait status. This is called every time we try to consume events, to see if there are any pending events that we we want to consume, before asking the targets for more events. To allow optimizing these cases, maintain a per-process-target list of threads that are resumed and have a pending wait status. In maybe_set_commit_resumed_all_targets, we'll be able to check in O(1) if there are any such threads simply by checking whether the list is empty. In random_pending_event_thread, we'll be able to use that list, which will be quicker than iterating the list of threads, especially when there are no resumed with pending wait status threads. About implementation details: using the new setters on class thread_info, it's relatively easy to maintain that list. Any time the "resumed" or "pending wait status" property is changed, we check whether that should cause the thread to be added or removed from the list. In set_thread_exited, we try to remove the thread from the list, because keeping an exited thread in that list would make no sense (especially if the thread is freed). My first implementation assumed that a process stratum target was always present when set_thread_exited is called. That's however, not the case: in some cases, targets unpush themselves from an inferior and then call "exit_inferior", which exits all the threads. If the target is unpushed before set_thread_exited is called on the threads, it means we could mistakenly leave some threads in the list. I tried to see how hard it would be to make it such that targets have to exit all threads before unpushing themselves from the inferior (that would seem logical to me, we don't want threads belonging to an inferior that has no process target). That seemed quite difficult and not worth the time at the moment. Instead, I changed inferior::unpush_target to remove all threads of that inferior from the list. As of this patch, the list is not used, this is done in the subsequent patches. The debug messages in process-stratum-target.c need to print some ptids. However, they can't use target_pid_to_str to print them without introducing a dependency on the current inferior (the current inferior is used to get the current target stack). For debug messages, I find it clearer to print the spelled out ptid anyway (the pid, lwp and tid values). Add a ptid_t::to_string method that returns a string representation of the ptid that is meant for debug messages, a bit like we already have frame_id::to_string. Change-Id: Iad8f93db2d13984dd5aa5867db940ed1169dbb67 |
|||
08bdefb58b |
gdb: make inferior_list use intrusive_list
Change inferior_list, the global list of inferiors, to use intrusive_list. I think most other changes are somewhat obvious fallouts from this change. There is a small change in behavior in scoped_mock_context. Before this patch, constructing a scoped_mock_context would replace the whole inferior list with only the new mock inferior. Tests using two scoped_mock_contexts therefore needed to manually link the two inferiors together, as the second scoped_mock_context would bump the first mock inferior from the thread list. With this patch, a scoped_mock_context adds its mock inferior to the inferior list on construction, and removes it on destruction. This means that tests run with mock inferiors in the inferior list in addition to any pre-existing inferiors (there is always at least one). There is no possible pid clash problem, since each scoped mock inferior uses its own process target, and pids are per process target. Co-Authored-By: Simon Marchi <simon.marchi@efficios.com> Change-Id: I7eb6a8f867d4dcf8b8cd2dcffd118f7270756018 |
|||
bf80931081 |
gdb: introduce intrusive_list, make thread_info use it
GDB currently has several objects that are put in a singly linked list, by having the object's type have a "next" pointer directly. For example, struct thread_info and struct inferior. Because these are simply-linked lists, and we don't keep track of a "tail" pointer, when we want to append a new element on the list, we need to walk the whole list to find the current tail. It would be nice to get rid of that walk. Removing elements from such lists also requires a walk, to find the "previous" position relative to the element being removed. To eliminate the need for that walk, we could make those lists doubly-linked, by adding a "prev" pointer alongside "next". It would be nice to avoid the boilerplate associated with maintaining such a list manually, though. That is what the new intrusive_list type addresses. With an intrusive list, it's also possible to move items out of the list without destroying them, which is interesting in our case for example for threads, when we exit them, but can't destroy them immediately. We currently keep exited threads on the thread list, but we could change that which would simplify some things. Note that with std::list, element removal is O(N). I.e., with std::list, we need to walk the list to find the iterator pointing to the position to remove. However, we could store a list iterator inside the object as soon as we put the object in the list, to address it, because std::list iterators are not invalidated when other elements are added/removed. However, if you need to put the same object in more than one list, then std::list<object> doesn't work. You need to instead use std::list<object *>, which is less efficient for requiring extra memory allocations. For an example of an object in multiple lists, see the step_over_next/step_over_prev fields in thread_info: /* Step-over chain. A thread is in the step-over queue if these are non-NULL. If only a single thread is in the chain, then these fields point to self. */ struct thread_info *step_over_prev = NULL; struct thread_info *step_over_next = NULL; The new intrusive_list type gives us the advantages of an intrusive linked list, while avoiding the boilerplate associated with manually maintaining it. intrusive_list's API follows the standard container interface, and thus std::list's interface. It is based the API of Boost's intrusive list, here: https://www.boost.org/doc/libs/1_73_0/doc/html/boost/intrusive/list.html Our implementation is relatively simple, while Boost's is complicated and intertwined due to a lot of customization options, which our version doesn't have. The easiest way to use an intrusive_list is to make the list's element type inherit from intrusive_node. This adds a prev/next pointers to the element type. However, to support putting the same object in more than one list, intrusive_list supports putting the "node" info as a field member, so you can have more than one such nodes, one per list. As a first guinea pig, this patch makes the per-inferior thread list use intrusive_list using the base class method. Unlike Boost's implementation, ours is not a circular list. An earlier version of the patch was circular: the intrusive_list type included an intrusive_list_node "head". In this design, a node contained pointers to the previous and next nodes, not the previous and next elements. This wasn't great for when debugging GDB with GDB, as it was difficult to get from a pointer to the node to a pointer to the element. With the design proposed in this patch, nodes contain pointers to the previous and next elements, making it easy to traverse the list by hand and inspect each element. The intrusive_list object contains pointers to the first and last elements of the list. They are nullptr if the list is empty. Each element's node contains a pointer to the previous and next elements. The first element's previous pointer is nullptr and the last element's next pointer is nullptr. Therefore, if there's a single element in the list, both its previous and next pointers are nullptr. To differentiate such an element from an element that is not linked into a list, the previous and next pointers contain a special value (-1) when the node is not linked. This is necessary to be able to reliably tell if a given node is currently linked or not. A begin() iterator points to the first item in the list. An end() iterator contains nullptr. This makes iteration until end naturally work, as advancing past the last element will make the iterator contain nullptr, making it equal to the end iterator. If the list is empty, a begin() iterator will contain nullptr from the start, and therefore be immediately equal to the end. Iterating on an intrusive_list yields references to objects (e.g. `thread_info&`). The rest of GDB currently expects iterators and ranges to yield pointers (e.g. `thread_info*`). To bridge the gap, add the reference_to_pointer_iterator type. It is used to define inf_threads_iterator. Add a Python pretty-printer, to help inspecting intrusive lists when debugging GDB with GDB. Here's an example of the output: (top-gdb) p current_inferior_.m_obj.thread_list $1 = intrusive list of thread_info = {0x61700002c000, 0x617000069080, 0x617000069400, 0x61700006d680, 0x61700006eb80} It's not possible with current master, but with this patch [1] that I hope will be merged eventually, it's possible to index the list and access the pretty-printed value's children: (top-gdb) p current_inferior_.m_obj.thread_list[1] $2 = (thread_info *) 0x617000069080 (top-gdb) p current_inferior_.m_obj.thread_list[1].ptid $3 = { m_pid = 406499, m_lwp = 406503, m_tid = 0 } Even though iterating the list in C++ yields references, the Python pretty-printer yields pointers. The reason for this is that the output of printing the thread list above would be unreadable, IMO, if each thread_info object was printed in-line, since they contain so much information. I think it's more useful to print pointers, and let the user drill down as needed. [1] https://sourceware.org/pipermail/gdb-patches/2021-April/178050.html Co-Authored-By: Simon Marchi <simon.marchi@efficios.com> Change-Id: I3412a14dc77f25876d742dab8f44e0ba7c7586c0 |
|||
9be259865c |
gdb: introduce iterator_range, remove next_adapter
I was always a bit confused by next_adapter, because it kind of mixes the element type and the iterator type. In reality, it is not much more than a class that wraps two iterators (begin and end). However, it assumes that: - you can construct the begin iterator by passing a pointer to the first element of the iterable - you can default-construct iterator to make the end iterator I think that by generalizing it a little bit, we can re-use it at more places. Rename it to "iterator_range". I think it describes a bit better: it's a range made by wrapping a begin and end iterator. Move it to its own file, since it's not related to next_iterator anymore. iterator_range has two constructors. The variadic one, where arguments are forwarded to construct the underlying begin iterator. The end iterator is constructed through default construction. This is a generalization of what we have today. There is another constructor which receives already constructed begin and end iterators, useful if the end iterator can't be obtained by default-construction. Or, if you wanted to make a range that does not end at the end of the container, you could pass any iterator as the "end". This generalization allows removing some "range" classes, like all_inferiors_range. These classes existed only to pass some arguments when constructing the begin iterator. With iterator_range, those same arguments are passed to the iterator_range constructed and then forwarded to the constructed begin iterator. There is a small functional difference in how iterator_range works compared to next_adapter. next_adapter stored the pointer it received as argument and constructeur an iterator in the `begin` method. iterator_range constructs the begin iterator and stores it as a member. Its `begin` method returns a copy of that iterator. With just iterator_range, uses of next_adapter<foo> would be replaced with: using foo_iterator = next_iterator<foo>; using foo_range = iterator_range<foo_iterator>; However, I added a `next_range` wrapper as a direct replacement for next_adapter<foo>. IMO, next_range is a slightly better name than next_adapter. The rest of the changes are applications of this new class. gdbsupport/ChangeLog: * next-iterator.h (class next_adapter): Remove. * iterator-range.h: New. gdb/ChangeLog: * breakpoint.h (bp_locations_range): Remove. (bp_location_range): New. (struct breakpoint) <locations>: Adjust type. (breakpoint_range): Use iterator_range. (tracepoint_range): Use iterator_range. * breakpoint.c (breakpoint::locations): Adjust return type. * gdb_bfd.h (gdb_bfd_section_range): Use iterator_range. * gdbthread.h (all_threads_safe): Pass argument to all_threads_safe_range. * inferior-iter.h (all_inferiors_range): Use iterator_range. (all_inferiors_safe_range): Use iterator_range. (all_non_exited_inferiors_range): Use iterator_range. * inferior.h (all_inferiors, all_non_exited_inferiors): Pass inferior_list as argument. * objfiles.h (struct objfile) <compunits_range>: Remove. <compunits>: Return compunit_symtab_range. * progspace.h (unwrapping_objfile_iterator) <unwrapping_objfile_iterator>: Take parameter by value. (unwrapping_objfile_range): Use iterator_range. (struct program_space) <objfiles_range>: Define with "using". <objfiles>: Adjust. <objfiles_safe_range>: Define with "using". <objfiles_safe>: Adjust. <solibs>: Return so_list_range, define here. * progspace.c (program_space::solibs): Remove. * psymtab.h (class psymtab_storage) <partial_symtab_iterator>: New. <partial_symtab_range>: Use iterator_range. * solist.h (so_list_range): New. * symtab.h (compunit_symtab_range): New. (symtab_range): New. (compunit_filetabs): Change to a function. * thread-iter.h (inf_threads_range, inf_non_exited_threads_range, safe_inf_threads_range, all_threads_safe_range): Use iterator_range. * top.h (ui_range): New. (all_uis): Use ui_range. Change-Id: Ib7a9d2a3547f45f01aa1c6b24536ba159db9b854 |
|||
122373f7f2 |
gdb: try to load libthread_db only after reading all shared libraries when attaching / handling a fork child
When trying to attach to a pthread process on a Linux system with glibc 2.33, we get: $ ./gdb -q -nx --data-directory=data-directory -p 1472010 Attaching to process 1472010 [New LWP 1472013] [New LWP 1472014] [New LWP 1472015] Error while reading shared library symbols for /usr/lib/libpthread.so.0: Cannot find user-level thread for LWP 1472015: generic error 0x00007ffff6d3637f in poll () from /usr/lib/libc.so.6 (gdb) When attaching to a process (or handling a fork child, an operation very similar to attaching), GDB reads the shared library list from the process. For each shared library (if "set auto-solib-add" is on), it reads its symbols and calls the "new_objfile" observable. The libthread-db code monitors this observable, and if it sees an objfile named somewhat like "libpthread.so" go by, it tries to load libthread_db.so in the GDB process itself. libthread_db knows how to navigate libpthread's data structures to get information about the existing threads. To locate these data structures, libthread_db calls ps_pglobal_lookup (implemented in proc-service.c), passing in a symbol name and expecting an address in return. Before glibc 2.33, libthread_db always asked for symbols found in libpthread. There was no ordering problem: since we were always trying to load libthread_db in reaction to processing libpthread (and reading in its symbols) and libthread_db only asked symbols from libpthread, the requested symbols could always be found. Starting with glibc 2.33, libthread_db now asks for a symbol name that can be found in /lib/ld-linux-x86-64.so.2 (_rtld_global). And the ordering in which GDB reads the shared libraries from the inferior when attaching is unfortunate, in that libpthread is processed before ld-linux. So when loading libthread_db in reaction to processing libpthread, and libthread_db requests the symbol that is from ld-linux, GDB is not yet able to supply it. That problematic symbol lookup happens in the thread_from_lwp function, when we call td_ta_map_lwp2thr_p, and an exception is thrown at this point: #0 0x00007ffff6681012 in __cxxabiv1::__cxa_throw (obj=0x60e000006100, tinfo=0x555560033b50 <typeinfo for gdb_exception_error>, dest=0x55555d9404bc <gdb_exception_error::~gdb_exception_error()>) at /build/gcc/src/gcc/libstdc++-v3/libsupc++/eh_throw.cc:78 #1 0x000055555e5d3734 in throw_it(return_reason, errors, const char *, typedef __va_list_tag __va_list_tag *) (reason=RETURN_ERROR, error=GENERIC_ERROR, fmt=0x55555f0c5360 "Cannot find user-level thread for LWP %ld: %s", ap=0x7fffffffaae0) at /home/simark/src/binutils-gdb/gdbsupport/common-exceptions.cc:200 #2 0x000055555e5d37d4 in throw_verror (error=GENERIC_ERROR, fmt=0x55555f0c5360 "Cannot find user-level thread for LWP %ld: %s", ap=0x7fffffffaae0) at /home/simark/src/binutils-gdb/gdbsupport/common-exceptions.cc:208 #3 0x000055555e0b0ed2 in verror (string=0x55555f0c5360 "Cannot find user-level thread for LWP %ld: %s", args=0x7fffffffaae0) at /home/simark/src/binutils-gdb/gdb/utils.c:171 #4 0x000055555e5e898a in error (fmt=0x55555f0c5360 "Cannot find user-level thread for LWP %ld: %s") at /home/simark/src/binutils-gdb/gdbsupport/errors.cc:43 #5 0x000055555d06b4bc in thread_from_lwp (stopped=0x617000035d80, ptid=...) at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:418 #6 0x000055555d07040d in try_thread_db_load_1 (info=0x60c000011140) at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:912 #7 0x000055555d071103 in try_thread_db_load (library=0x55555f0c62a0 "libthread_db.so.1", check_auto_load_safe=false) at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1014 #8 0x000055555d072168 in try_thread_db_load_from_sdir () at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1091 #9 0x000055555d072d1c in thread_db_load_search () at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1146 #10 0x000055555d07365c in thread_db_load () at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1203 #11 0x000055555d07373e in check_for_thread_db () at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1246 #12 0x000055555d0738ab in thread_db_new_objfile (objfile=0x61300000c0c0) at /home/simark/src/binutils-gdb/gdb/linux-thread-db.c:1275 #13 0x000055555bd10740 in std::__invoke_impl<void, void (*&)(objfile*), objfile*> (__f=@0x616000068d88: 0x55555d073745 <thread_db_new_objfile(objfile*)>) at /usr/include/c++/10.2.0/bits/invoke.h:60 #14 0x000055555bd02096 in std::__invoke_r<void, void (*&)(objfile*), objfile*> (__fn=@0x616000068d88: 0x55555d073745 <thread_db_new_objfile(objfile*)>) at /usr/include/c++/10.2.0/bits/invoke.h:153 #15 0x000055555bce0392 in std::_Function_handler<void (objfile*), void (*)(objfile*)>::_M_invoke(std::_Any_data const&, objfile*&&) (__functor=..., __args#0=@0x7fffffffb4a0: 0x61300000c0c0) at /usr/include/c++/10.2.0/bits/std_function.h:291 #16 0x000055555d3595c0 in std::function<void (objfile*)>::operator()(objfile*) const (this=0x616000068d88, __args#0=0x61300000c0c0) at /usr/include/c++/10.2.0/bits/std_function.h:622 #17 0x000055555d356b7f in gdb::observers::observable<objfile*>::notify (this=0x555566727020 <gdb::observers::new_objfile>, args#0=0x61300000c0c0) at /home/simark/src/binutils-gdb/gdb/../gdbsupport/observable.h:106 #18 0x000055555da3f228 in symbol_file_add_with_addrs (abfd=0x61200001ccc0, name=0x6190000d9090 "/usr/lib/libpthread.so.0", add_flags=..., addrs=0x7fffffffbc10, flags=..., parent=0x0) at /home/simark/src/binutils-gdb/gdb/symfile.c:1131 #19 0x000055555da3f763 in symbol_file_add_from_bfd (abfd=0x61200001ccc0, name=0x6190000d9090 "/usr/lib/libpthread.so.0", add_flags=<error reading variable: Cannot access memory at address 0xffffffffffffffb0>, addrs=0x7fffffffbc10, flags=<error reading variable: Cannot access memory at address 0xffffffffffffffc0>, parent=0x0) at /home/simark/src/binutils-gdb/gdb/symfile.c:1167 #20 0x000055555d95f9fa in solib_read_symbols (so=0x6190000d8e80, flags=...) at /home/simark/src/binutils-gdb/gdb/solib.c:681 #21 0x000055555d96233d in solib_add (pattern=0x0, from_tty=0, readsyms=1) at /home/simark/src/binutils-gdb/gdb/solib.c:987 #22 0x000055555d93646e in enable_break (info=0x608000008f20, from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2238 #23 0x000055555d93cfc0 in svr4_solib_create_inferior_hook (from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:3049 #24 0x000055555d96610d in solib_create_inferior_hook (from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib.c:1195 #25 0x000055555cdee318 in post_create_inferior (from_tty=0) at /home/simark/src/binutils-gdb/gdb/infcmd.c:318 #26 0x000055555ce00e6e in setup_inferior (from_tty=0) at /home/simark/src/binutils-gdb/gdb/infcmd.c:2439 #27 0x000055555ce59c34 in handle_one (event=...) at /home/simark/src/binutils-gdb/gdb/infrun.c:4887 #28 0x000055555ce5cd00 in stop_all_threads () at /home/simark/src/binutils-gdb/gdb/infrun.c:5064 #29 0x000055555ce7f0da in stop_waiting (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:8006 #30 0x000055555ce67f5c in handle_signal_stop (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:6062 #31 0x000055555ce63653 in handle_inferior_event (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:5727 #32 0x000055555ce4f297 in fetch_inferior_event () at /home/simark/src/binutils-gdb/gdb/infrun.c:4105 #33 0x000055555cdbe3bf in inferior_event_handler (event_type=INF_REG_EVENT) at /home/simark/src/binutils-gdb/gdb/inf-loop.c:42 #34 0x000055555d018047 in handle_target_event (error=0, client_data=0x0) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:4060 #35 0x000055555e5ea77e in handle_file_event (file_ptr=0x60600008b1c0, ready_mask=1) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:575 #36 0x000055555e5eb09c in gdb_wait_for_event (block=0) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:701 #37 0x000055555e5e8d19 in gdb_do_one_event () at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:212 #38 0x000055555dd6e0d4 in wait_sync_command_done () at /home/simark/src/binutils-gdb/gdb/top.c:528 #39 0x000055555dd6e372 in maybe_wait_sync_command_done (was_sync=0) at /home/simark/src/binutils-gdb/gdb/top.c:545 #40 0x000055555d0ec7c8 in catch_command_errors (command=0x55555ce01bb8 <attach_command(char const*, int)>, arg=0x7fffffffe28d "1472010", from_tty=1, do_bp_actions=false) at /home/simark/src/binutils-gdb/gdb/main.c:452 #41 0x000055555d0f03ad in captured_main_1 (context=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1149 #42 0x000055555d0f1239 in captured_main (data=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1232 #43 0x000055555d0f1315 in gdb_main (args=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1257 #44 0x000055555bb70cf9 in main (argc=7, argv=0x7fffffffde88) at /home/simark/src/binutils-gdb/gdb/gdb.c:32 The exception is caught here: #0 __cxxabiv1::__cxa_begin_catch (exc_obj_in=0x60e0000060e0) at /build/gcc/src/gcc/libstdc++-v3/libsupc++/eh_catch.cc:84 #1 0x000055555d95fded in solib_read_symbols (so=0x6190000d8e80, flags=...) at /home/simark/src/binutils-gdb/gdb/solib.c:689 #2 0x000055555d96233d in solib_add (pattern=0x0, from_tty=0, readsyms=1) at /home/simark/src/binutils-gdb/gdb/solib.c:987 #3 0x000055555d93646e in enable_break (info=0x608000008f20, from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2238 #4 0x000055555d93cfc0 in svr4_solib_create_inferior_hook (from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:3049 #5 0x000055555d96610d in solib_create_inferior_hook (from_tty=0) at /home/simark/src/binutils-gdb/gdb/solib.c:1195 #6 0x000055555cdee318 in post_create_inferior (from_tty=0) at /home/simark/src/binutils-gdb/gdb/infcmd.c:318 #7 0x000055555ce00e6e in setup_inferior (from_tty=0) at /home/simark/src/binutils-gdb/gdb/infcmd.c:2439 #8 0x000055555ce59c34 in handle_one (event=...) at /home/simark/src/binutils-gdb/gdb/infrun.c:4887 #9 0x000055555ce5cd00 in stop_all_threads () at /home/simark/src/binutils-gdb/gdb/infrun.c:5064 #10 0x000055555ce7f0da in stop_waiting (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:8006 #11 0x000055555ce67f5c in handle_signal_stop (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:6062 #12 0x000055555ce63653 in handle_inferior_event (ecs=0x7fffffffd170) at /home/simark/src/binutils-gdb/gdb/infrun.c:5727 #13 0x000055555ce4f297 in fetch_inferior_event () at /home/simark/src/binutils-gdb/gdb/infrun.c:4105 #14 0x000055555cdbe3bf in inferior_event_handler (event_type=INF_REG_EVENT) at /home/simark/src/binutils-gdb/gdb/inf-loop.c:42 #15 0x000055555d018047 in handle_target_event (error=0, client_data=0x0) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:4060 #16 0x000055555e5ea77e in handle_file_event (file_ptr=0x60600008b1c0, ready_mask=1) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:575 #17 0x000055555e5eb09c in gdb_wait_for_event (block=0) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:701 #18 0x000055555e5e8d19 in gdb_do_one_event () at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:212 #19 0x000055555dd6e0d4 in wait_sync_command_done () at /home/simark/src/binutils-gdb/gdb/top.c:528 #20 0x000055555dd6e372 in maybe_wait_sync_command_done (was_sync=0) at /home/simark/src/binutils-gdb/gdb/top.c:545 #21 0x000055555d0ec7c8 in catch_command_errors (command=0x55555ce01bb8 <attach_command(char const*, int)>, arg=0x7fffffffe28d "1472010", from_tty=1, do_bp_actions=false) at /home/simark/src/binutils-gdb/gdb/main.c:452 #22 0x000055555d0f03ad in captured_main_1 (context=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1149 #23 0x000055555d0f1239 in captured_main (data=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1232 #24 0x000055555d0f1315 in gdb_main (args=0x7fffffffdd10) at /home/simark/src/binutils-gdb/gdb/main.c:1257 #25 0x000055555bb70cf9 in main (argc=7, argv=0x7fffffffde88) at /home/simark/src/binutils-gdb/gdb/gdb.c:32 Catching the exception at this point means that the thread_db_info object for this inferior will be left in place, despite the failure to load libthread_db. This means that there won't be further attempts at loading libthread_db, because thread_db_load will think that libthread_db is already loaded for this inferior and will always exit early. To fix this, add a try/catch around calling try_thread_db_load_1 in try_thread_db_load, such that if some exception is thrown while trying to load libthread_db, we reset / delete the thread_db_info for that inferior. That alone makes attach work fine again, because check_for_thread_db is called again in the thread_db_inferior_created observer (that happens after we learned about all shared libraries and their symbols), and libthread_db is successfully loaded then. When attaching, I think that the inferior_created observer is a good place to try to load libthread_db: it is called once everything has stabilized, when we learned about all shared libraries. The only problem then is that when we first try (and fail) to load libthread_db, in reaction to learning about libpthread, we show this warning: warning: Unable to find libthread_db matching inferior's thread library, thread debugging will not be available. This is misleading, because we do succeed in loading it later. So when attaching, I think we shouldn't try to load libthread_db in reaction to the new_objfile events, we should wait until we have learned about all shared libraries (using the inferior_created observable). To do so, add an `in_initial_library_scan` flag to struct inferior. This flag is used to postpone loading libthread_db if we are attaching or handling a fork child. When debugging remotely with GDBserver, the same problem happens, except that the qSymbol mechanism (allowing the remote side to ask GDB for symbols values) is involved. The fix there is the same idea, we make GDB wait until all shared libraries and their symbols are known before sending out a qSymbol packet. This way, we never present the remote side a state where libpthread.so's symbols are known but ld-linux's symbols aren't. gdb/ChangeLog: * inferior.h (class inferior) <in_initial_library_scan>: New. * infcmd.c (post_create_inferior): Set in_initial_library_scan. * infrun.c (follow_fork_inferior): Likewise. * linux-thread-db.c (try_thread_db_load): Catch exception thrown by try_thread_db_load_1 (thread_db_load): Return early if in_initial_library_scan is set. * remote.c (remote_new_objfile): Return early if in_initial_library_scan is set. Change-Id: I7a279836cfbb2b362b4fde11b196b4aab82f5efb |
|||
8a82de5884 |
gdb: some int to bool conversion
Change int parameter to bool in remote_notice_new_inferior (remote.c) and notice_new_inferior (infcmd.c), and update the callers. There should be no user visible changes after this commit. gdb/ChangeLog: * infcmd.c (notice_new_inferior): Change parameter type. * inferior.h (notice_new_inferior): Change parameter type. * remote.c (remote_notice_new_inferior): Change parameter type to bool. Also update type of local variable to bool. (remote_target::update_thread_list): Change type of local variable to bool. (remote_target::process_stop_reply): Pass bool instead of int to remote_notice_new_inferior. |
|||
ec66d6ea54 |
gdb: make inferior::args a unique_xmalloc_ptr
Use unique_xmalloc_ptr to avoid manual memory management. gdb/ChangeLog: * inferior.h (class inferior) <args>: Change type to unique_xmalloc_ptr. * inferior.c (inferior::~inferior): Don't free args. * infcmd.c (get_inferior_args): Adjust. (set_inferior_args): Adjust. Change-Id: I96300e59eb2faf2d80660416a8f5694d243a944e |
|||
4efeb0d3e8 |
gdb/continuations: turn continuation functions into inferior methods
Turn continuations-related functions into methods of the inferior class. This is a refactoring. gdb/ChangeLog: 2021-04-22 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * Makefile.in (COMMON_SFILES): Remove continuations.c. * inferior.c (inferior::add_continuation): New method, adapted from 'add_inferior_continuation'. (inferior::do_all_continuations): New method, adapted from 'do_all_inferior_continuations'. (inferior::~inferior): Clear the list of continuations directly. * inferior.h (class inferior) <continuations>: Rename into... <m_continuations>: ...this and make private. * continuations.c: Remove. * continuations.h: Remove. * event-top.c: Don't include "continuations.h". Update the users below. * inf-loop.c (inferior_event_handler) * infcmd.c (attach_command) (notice_new_inferior): Update. |
|||
c4c493de2b |
gdb/continuations: use lambdas instead of function pointers
Use lambdas and std::list to track inferior continuations. This is a refactoring. gdb/ChangeLog: 2021-04-22 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * inferior.h (class inferior) <continuations>: Change the type to be an std::list of std::function's. Update the references and uses below. * continuations.c (struct continuation): Delete. (make_continuation): Delete. (do_my_continuations_1): Delete. (do_my_continuations): Delete. (discard_my_continuations_1): Delete. (discard_my_continuations): Delete. (add_inferior_continuation): Update. (do_all_inferior_continuations): Update. (discard_all_inferior_continuations): Update. * continuations.h (add_inferior_continuation): Update to take an std::function as the parameter. * infcmd.c (struct attach_command_continuation_args): Delete. (attach_command_continuation): Delete. (attach_command_continuation_free_args): Delete. (attach_command): Update. (notice_new_inferior): Update. |
|||
1194676e0b |
gdb/continuations: do minor cleanup
Inferior continuations are no longer used by the until and finish command. It is used only by the attach command and the remote target upon detecting new inferiors. Update the comment accordingly. Also update another comment about non-existent thread continuations and remove an unused #include. gdb/ChangeLog: 2021-04-22 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * continuations.h: Update the general comment. * inferior.h (class inferior) <continuations>: Update the comment. * interps.c: Do not include "continuations.h". |
|||
02980c5645 |
gdb: remove push_target free functions
Same as the previous patch, but for the push_target functions. The implementation of the move variant is moved to a new overload of inferior::push_target. gdb/ChangeLog: * target.h (push_target): Remove, update callers to use inferior::push_target. * target.c (push_target): Remove. * inferior.h (class inferior) <push_target>: New overload. Change-Id: I5a95496666278b8f3965e5e8aecb76f54a97c185 |
|||
3666a04883 |
Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files. |
|||
c7acb87bc6 |
gdb: move displaced stepping types to displaced-stepping.{h,c}
Move displaced-stepping related stuff unchanged to displaced-stepping.h and displaced-stepping.c. This helps make the following patch a bit smaller and easier to read. gdb/ChangeLog: * Makefile.in (COMMON_SFILES): Add displaced-stepping.c. * aarch64-tdep.h: Include displaced-stepping.h. * displaced-stepping.h (struct displaced_step_copy_insn_closure): Move here. (displaced_step_copy_insn_closure_up): Move here. (struct buf_displaced_step_copy_insn_closure): Move here. (struct displaced_step_inferior_state): Move here. (debug_displaced): Move here. (displaced_debug_printf_1): Move here. (displaced_debug_printf): Move here. * displaced-stepping.c: New file. * gdbarch.sh: Include displaced-stepping.h in gdbarch.h. * gdbarch.h: Re-generate. * inferior.h: Include displaced-stepping.h. * infrun.h (debug_displaced): Move to displaced-stepping.h. (displaced_debug_printf_1): Likewise. (displaced_debug_printf): Likewise. (struct displaced_step_copy_insn_closure): Likewise. (displaced_step_copy_insn_closure_up): Likewise. (struct buf_displaced_step_copy_insn_closure): Likewise. (struct displaced_step_inferior_state): Likewise. * infrun.c (show_debug_displaced): Move to displaced-stepping.c. (displaced_debug_printf_1): Likewise. (displaced_step_copy_insn_closure::~displaced_step_copy_insn_closure): Likewise. (_initialize_infrun): Don't register "set/show debug displaced". Change-Id: I29935f5959b80425370630a45148fc06cd4227ca |
|||
a7aba2668a |
gdb: remove arguments from inferior_created observable
I noticed that non of the listeners of the inferior_created observable used either of the arguments. Remove them. This in turn allows removing the target parameter of post_create_inferior. Tested only by rebuilding. gdb/ChangeLog: * observable.h <inferior_created>: Remove parameters. Update all listeners. * inferior.h (post_create_inferior): Remove target parameter. Update all callers. Change-Id: I8944cefdc4447ed5347dc927b75abf1e7a0e27e6 |
|||
55f6301ac0 |
Remove target_has_execution macro
This removes the object-like macro target_has_execution, replacing it with a function call. target_has_execution_current is also now handled by this function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * inferior.h (class inferior) <has_execution>: Update. * windows-tdep.c (windows_solib_create_inferior_hook): Update. * valops.c (find_function_in_inferior) (value_allocate_space_in_inferior): Update. * top.c (kill_or_detach): Update. * target.c (target_preopen, set_target_permissions): Update. (target_has_execution_current): Remove. * sparc64-tdep.c (adi_examine_command, adi_assign_command): Update. * solib.c (update_solib_list, reload_shared_libraries): Update. * solib-svr4.c (svr4_solib_create_inferior_hook): Update. * solib-dsbt.c (enable_break): Update. * score-tdep.c (score7_fetch_inst): Update. * rs6000-nat.c (rs6000_nat_target::xfer_shared_libraries): Update. * remote.c (remote_target::start_remote) (remote_target::remote_check_symbols, remote_target::open_1) (remote_target::remote_detach_1, remote_target::verify_memory) (remote_target::xfer_partial, remote_target::read_description) (remote_target::get_min_fast_tracepoint_insn_len): Update. * record-full.c (record_full_open_1): Update. * record-btrace.c (record_btrace_target_open): Update. * objc-lang.c (lookup_objc_class, lookup_child_selector) (value_nsstring): Update. * linux-thread-db.c (add_thread_db_info) (thread_db_find_new_threads_silently, check_thread_db_callback) (try_thread_db_load_1, record_thread): Update. * linux-tdep.c (linux_info_proc, linux_vsyscall_range_raw): Update. * linux-fork.c (checkpoint_command): Update. * infrun.c (set_non_stop, set_observer_mode) (check_multi_target_resumption, for_each_just_stopped_thread) (maybe_remove_breakpoints, normal_stop) (class infcall_suspend_state): Update. * infcmd.c (ERROR_NO_INFERIOR, kill_if_already_running) (info_program_command, attach_command): Update. * infcall.c (call_function_by_hand_dummy): Update. * inf-loop.c (inferior_event_handler): Update. * gcore.c (gcore_command, derive_heap_segment): Update. * exec.c (exec_file_command): Update. * eval.c (evaluate_subexp): Update. * compile/compile.c (compile_to_object): Update. * cli/cli-dump.c (restore_command): Update. * breakpoint.c (update_watchpoint) (update_inserted_breakpoint_locations) (insert_breakpoint_locations, get_bpstat_thread): Update. * target.h (target_has_execution): Remove macro. (target_has_execution_current): Don't declare. (target_has_execution): Rename from target_has_execution_1. Add argument default. |
|||
1e7c1b2242 |
[gdb/build,c++17] Fix use of deprecated std::uncaught_exception
When compiling gdb with -std=gnu++17, we run into: ... ../../gdb/inferior.h: In member function ‘void \ infcall_suspend_state_deleter::operator()(infcall_suspend_state*) const’: ../../gdb/inferior.h:83:12: error: ‘bool std::uncaught_exception()’ is \ deprecated [-Werror=deprecated-declarations] 83 | if (!std::uncaught_exception ()) ... Fix this by rewriting using std::uncaught_exceptions. Tested on x86_64-linux with gcc 9.3.1 and -std=gnu17/gnu++17. Tested with test-case from RFC patch https://sourceware.org/pipermail/gdb-patches/2020-June/169970.html. gdb/ChangeLog: 2020-07-05 Tom de Vries <tdevries@suse.de> PR build/26187 * inferior.h (struct infcall_suspend_state_deleter): If available, use std::uncaught_exceptions instead of deprecated std::uncaught_exception. |
|||
05779d57f9 |
Make {get,set}_inferior_io_terminal inferior methods
This converts the get_inferior_io_terminal and set_inferior_io_terminal free functions to inferior methods. Since the related commands are called "tty", "{set,show} inferior-tty", and MI's "-inferior-tty-{set,show}", to make the connection between the commands and the code more obvious, the methods are named set_tty/tty instead of set_io_terminal/io_terminal. gdb/ChangeLog: * fork-child.c (prefork_hook): Adjust. * infcmd.c (set_inferior_io_terminal, get_inferior_io_terminal): Delete. (set_inferior_tty_command, show_inferior_tty_command): Adjust. * inferior.c (inferior::set_tty, inferior::tty): New methods. * inferior.h (set_inferior_io_terminal, get_inferior_io_terminal): Remove declarations. (struct inferior) <set_tty, tty>: New methods. (struct inferior) <terminal>: Rename to ... (struct inferior) <m_terminal>: ... this and make private. * main.c (captured_main_1): Adjust. * mi/mi-cmd-env.c (mi_cmd_inferior_tty_set): Adjust. (mi_cmd_inferior_tty_show): Adjust. * nto-procfs.c (nto_procfs_target::create_inferior): Adjust. * windows-nat.c (windows_nat_target::create_inferior): Adjust. |
|||
277474eea0 |
gdb: make inferior::terminal a unique ptr
This changes the inferior::terminal field to be a unique pointer, so its deallocation is automatically managed. gdb/ChangeLog: * inferior.h (struct inferior) <terminal>: Change type to gdb::unique_xmalloc_ptr<char>. * inferior.c (inferior::~inferior): Don't free inf->terminal. * infcmd.c (set_inferior_io_terminal): Don't free terminal field, adjust to unique pointer. (get_inferior_io_terminal): Adjust to unique pointer. Change-Id: Iedb6459b4f9eeae812b0cb9d514b5707d5107cdb |
|||
92651b1d91 |
gdb: Move construct_inferior_arguments to gdbsupport
This moves the function construct_inferior_arguments from gdb/inferior.h and gdb/infcmd.c to gdbsupport/common-inferior.{h,cc}. While at it, also move the function's comment to the header file to align with current standards. The intention is to use it from gdbserver in a follow-up commit. gdb/ChangeLog: * infcmd.c, inferior.h: (construct_inferior_arguments): Moved function from here to gdbsupport/common-inferior.{h,cc} gdbsupport/ChangeLog: * common-inferior.h, common-inferior.cc: (construct_inferior_arguments): Move function here from gdb/infcmd.c, gdb/inferior.h Change-Id: Ib9290464ce8c0872f605d8829f88352d064c30d6 |
|||
740480b88a |
Remove iterate_over_inferiors
The last caller of iterate_over_inferiors is darwin-nat.c. This patch removes the calls from this file, and then remove iterate_over_inferiors. In general I think "external iteration" is to be preferred in gdb, the main benefit being that the code is easier to read. I rebuilt this on Darwin. I seem to only have access to Darwin systems where gdb does not yet work :-(, so I can't run the test suite. gdb/ChangeLog 2020-04-23 Tom Tromey <tom@tromey.com> * inferior.h (iterate_over_inferiors): Don't declare. * inferior.c (iterate_over_inferiors): Remove. * darwin-nat.c (find_inferior_task_it, find_inferior_pid_it): Remove. (darwin_find_inferior_by_task, darwin_find_inferior_by_pid): Don't use iterate_over_inferiors. (darwin_resume_inferior_it) (struct resume_inferior_threads_param) (darwin_resume_inferior_threads_it): Remove. (darwin_nat_target::resume): Don't use iterate_over_inferiors. Change-Id: Ib2fdf2c98e40f13156ff869ed3173d5f1fdae7ea |
|||
5b6d1e4fa4 |
Multi-target support
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target. |
|||
db2d40f7d0 |
Introduce switch_to_inferior_no_thread
Several places want to switch context to an inferior and its pspace, while at the same time switch to "no thread selected". This commit adds a function that does that, and uses it in a few places. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * inferior.c (switch_to_inferior_no_thread): New function, factored out from ... (inferior_command): ... here. * inferior.h (switch_to_inferior_no_thread): Declare. * mi/mi-main.c (run_one_inferior): Use switch_to_inferior_no_thread. |
|||
5018ce90c1 |
Make target_ops::has_execution take an 'inferior *' instead of a ptid_t
With the multi-target work, each inferior will have its own target stack, so to call a target method, we'll need to make sure that the inferior in question is the current one, otherwise target->beneath() calls will find the target beneath in the wrong inferior. In some places, it's much more convenient to be able to check whether an inferior has execution without having to switch to it in order to call target_has_execution on the right inferior/target stack, to avoid side effects with switching inferior/thread/program space. The current target_ops::has_execution method takes a ptid_t as parameter, which, in a multi-target world, isn't sufficient to identify the target. This patch prepares to address that, by changing the parameter to an inferior pointer instead. From the inferior, we'll be able to query its target stack to tell which target is beneath. Also adds a new inferior::has_execution() method to make callers a bit more natural to read. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * corelow.c (core_target::has_execution): Change parameter type to inferior pointer. * inferior.c (number_of_live_inferiors): Use inferior::has_execution instead of target_has_execution_1. * inferior.h (inferior::has_execution): New. * linux-thread-db.c (thread_db_target::update_thread_list): Use inferior::has_execution instead of target_has_execution_1. * process-stratum-target.c (process_stratum_target::has_execution): Change parameter type to inferior pointer. Check the inferior's PID instead of inferior_ptid. * process-stratum-target.h (process_stratum_target::has_execution): Change parameter type to inferior pointer. * record-full.c (record_full_core_target::has_execution): Change parameter type to inferior pointer. * target.c (target_has_execution_1): Change parameter type to inferior pointer. (target_has_execution_current): Adjust. * target.h (target_ops::has_execution): Change parameter type to inferior pointer. (target_has_execution_1): Change parameter type to inferior pointer. Change return type to bool. * tracefile.h (tracefile_target::has_execution): Change parameter type to inferior pointer. |
|||
b811d2c292 |
Update copyright year range in all GDB files.
gdb/ChangeLog: Update copyright year range in all GDB files. |