This turns many functions that are related to optimized-out or
availability-checking to be methods of value. The static function
value_entirely_covered_by_range_vector is also converted to be a
private method.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This turns the remaining value_contents functions -- value_contents,
value_contents_all, value_contents_for_printing, and
value_contents_for_printing_const -- into methods of value. It also
converts the static functions require_not_optimized_out and
require_available to be private methods.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Nearly every call to fixup_symbol_section in gdb is incorrect, and if
any such call has an effect, it's purely by happenstance.
fixup_section has a long comment explaining that the call should only
be made before runtime section offsets are applied. And, the loop in
this code (the fallback loop -- the minsym lookup code is "ok") is
careful to remove these offsets before comparing addresses.
However, aside from a single call in dwarf2/read.c, every call in gdb
is actually done after section offsets have been applied. So, these
calls are incorrect.
Now, these calls could be made when the symbol is created. I
considered this approach, but I reasoned that the code has been this
way for many years, seemingly without ill effect. So, instead I chose
to simply remove the offending calls.
This is the second step of making frame_info_ptr automatic, reinflate on
demand whenever trying to obtain the wrapper frame_info pointer, either
through the get method or operator->. Make the reinflate method
private, it is used as a convenience method in those two.
Add an "is_null" method, because it is often needed to know whether the
frame_info_ptr wraps an frame_info or is empty.
Make m_ptr mutable, so that it's possible to reinflate const
frame_info_ptr objects. Whether m_ptr is nullptr or not does not change
the logical state of the object, because we re-create it on demand. I
believe this is the right use case for mutable.
Change-Id: Icb0552d0035e227f81eb3c121d8a9bb2f9d25794
Reviewed-By: Bruno Larsen <blarsen@redhat.com>
This is the first step of making frame_info_ptr automatic. Remove the
frame_info_ptr::prepare_reinflate method, move that code to the
constructor.
Change-Id: I85cdae3ab1c043c70e2702e7fb38e9a4a8a675d8
Reviewed-By: Bruno Larsen <blarsen@redhat.com>
PR record/29927 - reverse-finish requires two reverse next instructions to
reach previous source line
PowerPC uses two entry points called the local entry point (LEP) and the
global entry point (GEP). Normally the LEP is used when calling a
function. However, if the table of contents (TOC) value in register 2 is
not valid the GEP is called to setup the TOC before execution continues at
the LEP. When executing in reverse, the function finish_backward sets the
break point at the alternate entry point (GEP). However if the forward
execution enters via the normal entry point (LEP), the reverse execution
never sees the break point at the GEP of the function. Reverse execution
continues until the next break point is encountered or the end of the
recorded log is reached causing gdb to stop at the wrong place.
This patch adds a new address to struct execution_control_state to hold the
address of the alternate function start address, known as the GEP on
PowerPC. The finish_backwards function is updated. If the stopping point
is between the two entry points (the LEP and GEP on PowerPC), the stepping
range is set to execute back to the alternate entry point (GEP on PowerPC).
Otherwise, a breakpoint is inserted at the normal entry point (LEP on
PowerPC).
Function process_event_stop_test checks uses a stepping range to stop
execution in the caller at the first instruction of the source code line.
Note, on systems that only support one entry point, the address of the two
entry points are the same.
Test finish-reverse-next.exp is updated to include tests for the
reverse-finish command when the function is entered via the normal entry
point (i.e. the LEP) and the alternate entry point (i.e. the GEP).
The patch has been tested on X86 and PowerPC with no regressions.
PR record/29927 - reverse-finish requires two reverse next instructions to
reach previous source line
Currently on X86, when executing the finish command in reverse, gdb does a
single step from the first instruction in the callee to get back to the
caller. GDB stops on the last instruction in the source code line where
the call was made. When stopped at the last instruction of the source code
line, a reverse next or step command will stop at the first instruction
of the same source code line thus requiring two step/next commands to
reach the previous source code line. It should only require one step/next
command to reach the previous source code line.
By contrast, a reverse next or step command from the first line in a
function stops at the first instruction in the source code line where the
call was made.
This patch fixes the reverse finish command so it will stop at the first
instruction of the source line where the function call was made. The
behavior on X86 for the reverse-finish command now matches doing a
reverse-next from the beginning of the function.
The proceed_to_finish flag in struct thread_control_state is no longer
used. This patch removes the declaration, initialization and setting of
the flag.
This patch requires a number of regression tests to be updated. Test
gdb.mi/mi-reverse.exp no longer needs to execute two steps to get to the
previous line. The gdb output for tests gdb.reverse/until-precsave.exp
and gdb.reverse/until-reverse.exp changed slightly. The expected result in
tests gdb.reverse/amd64-failcall-reverse.exp and
gdb.reverse/singlejmp-reverse.exp are updated to the correct expected
result.
This patch adds a new test gdb.reverse/finish-reverse-next.exp to test the
reverse-finish command when returning from the entry point and from the
body of the function.
The step_until proceedure in test gdb.reverse/step-indirect-call-thunk.exp
was moved to lib/gdb.exp and renamed cmd_until.
The patch has been tested on X86 and PowerPC to verify no additional
regression failures occured.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29927
Change the return type of normal_stop (infrun.c) from int to bool.
Update callers.
I've also converted the (void) to () in the function declaration and
definition, given I was changing those lines anyway.
There should be no user visible changes after this commit.
The gdbarch "return_value" can't correctly handle variably-sized
types. The problem here is that the TYPE_LENGTH of such a type is 0,
until the type is resolved, which requires reading memory. However,
gdbarch_return_value only accepts a buffer as an out parameter.
Fixing this requires letting the implementation of the gdbarch method
resolve the type and return a value -- that is, both the contents and
the new type.
After an attempt at this, I realized I wouldn't be able to correctly
update all implementations (there are ~80) of this method. So,
instead, this patch adds a new method that falls back to the current
method, and it updates gdb to only call the new method. This way it's
possible to incrementally convert the architectures that I am able to
test.
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
Some class members were changed to bool, but there was
still some assignments or comparisons using 0/1.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
The GDB coding standard specifies that nullptr should be used instead of
NULL. There are numerous uses of NULL and nullptr in files infcmd.c and
infrun.c. This patch replaces the various uses of NULL with nullptr in
the source files. The use of NULL in the comments was not changed.
The patch does not introduce any functional changes.
The patch has been tested on PowerPC and Intel X86_64 with no new unexpected
test failures, unresolved tests, new core files etc.
The recent commit:
commit a0eda3df5b750ae32576a9be092b361281a41787
Author: Carl Love <cel@us.ibm.com>
Date: Mon Nov 14 16:22:37 2022 -0500
PowerPC, fix support for printing the function return value for non-trivial values.
Is generating a segmentation fault on x86_64-linux.
segfault:
...
PASS: gdb.asm/asm-source.exp: info source asmsrc1.s
ERROR: GDB process no longer exists
UNRESOLVED: gdb.asm/asm-source.exp: finish from foo3
...
Reproduced on command line:
...
$ gdb -q -batch -x outputs/gdb.asm/asm-source/gdb.in.1
...
The problem seems to be that:
...
Thread 1 "gdb" received signal SIGSEGV, Segmentation fault.
0x000000000043de7a in symbol::type (this=0x0) at
.../gdb_versions/devel/src/gdb/symtab.h:1287
1287 return m_type;
...
because:
...
(gdb) up
#1 0x0000000000852d94 in finish_command (arg=0x0, from_tty=0)
at .../gdb_versions/devel/src/gdb/infcmd.c:1887
1887 = check_typedef (sm->function->type ()->target_type ());
(gdb) p sm->function
$1 = (symbol *) 0x0
The code is not checking if sm->function is NULL. If sm->function is NULL
the check for the return buffer should be skipped.
Currently, a non-trivial return value from a function cannot currently be
reliably determined on PowerPC. This is due to the fact that the PowerPC
ABI uses register r3 to store the address of the buffer containing the
non-trivial return value when the function is called. The PowerPC ABI
does not guarantee the value in register r3 is not modified in the
function. Thus the value in r3 cannot be reliably used to obtain the
return addreses on exit from the function.
This patch adds a new gdbarch method to allow PowerPC to access the value
of r3 on entry to a function. On PowerPC, the new gdbarch method attempts
to use the DW_OP_entry_value for the DWARF entries, when exiting the
function, to determine the value of r3 on entry to the function. This
requires the use of the -fvar-tracking compiler option to compile the
user application thus generating the DW_OP_entry_value in the binary. The
DW_OP_entry_value entries in the binary file allows GDB to resolve the
DW_TAG_call_site entries. This new gdbarch method is used to get the
return buffer address, in the case of a function returning a nontrivial
data type, on exit from the function. The GDB function should_stop checks
to see if RETURN_BUF is non-zero. By default, RETURN_BUF will be set to
zero by the new gdbarch method call for all architectures except PowerPC.
The get_return_value function will be used to obtain the return value on
all other architectures as is currently being done if RETURN_BUF is zero.
On PowerPC, the new gdbarch method will return a nonzero address in
RETURN_BUF if the value can be determined. The value_at function uses the
return buffer address to get the return value.
This patch fixes five testcase failures in gdb.cp/non-trivial-retval.exp.
The correct function return values are now reported.
Note this patch is dependent on patch: "PowerPC, function
ppc64_sysv_abi_return_value add missing return value convention".
This patch has been tested on Power 10 and x86-64 with no regressions.
Commit 0be837be9fb4 ("gdb: make "start" breakpoint inferior-specific")
regresses gdb.ada/start.exp:
(gdb) start
Error in expression, near `1'.
(gdb) UNTESTED: gdb.ada/start.exp: start failed to land inside the right procedure
This is because in Ada, the equality operator is =, not ==.
I checked the other languages supported by GDB, these other languages
use = for equality:
- Pascal: tests like gdb.pascal/hello.exp are affected too
- Modula-2: I tried building a Modula-2 hello world using gm2, but it
seems like the generated DWARF doesn't specify the Modula-2 language
in the CUs, it's C++ and C, so the selected language isn't
"modula-2". But if I manually do "set language modula-2" on a dummy
program and then "start", I get the same error.
Other languages all use ==.
So, a short term fix would be to use = or == in the expression, based on
the current language. If this was meant to be permanent, I would
suggest adding something like an "equality_operator" method to
language_defn, that returns the right equality operator for the
language. But the goal is to replace all this with proper
inferior-specific breakpoints, so I hope all this is temporary.
Approved-By: Tom de Vries <tdevries@suse.de>
Change-Id: Id4d38e14a80e6bbbb1ad2b2277f974dd55192969
I saw this failure on a CI:
(gdb) add-inferior
[New inferior 2]
Added inferior 2
(gdb) PASS: gdb.threads/vfork-multi-inferior.exp: method=non-stop: add-inferior
inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) PASS: gdb.threads/vfork-multi-inferior.exp: method=non-stop: inferior 2
kill
The program is not being run.
(gdb) file /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior-sleep
Reading symbols from /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior-sleep...
(gdb) run &
Starting program: /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior-sleep
(gdb) PASS: gdb.threads/vfork-multi-inferior.exp: method=non-stop: run inferior 2
inferior 1
[Switching to inferior 1 [<null>] (<noexec>)]
(gdb) PASS: gdb.threads/vfork-multi-inferior.exp: method=non-stop: inferior 1
kill
The program is not being run.
(gdb) file /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior
Reading symbols from /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior...
(gdb) break should_break_here
Breakpoint 1 at 0x11b1: file /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/src/binutils-gdb/gdb/testsuite/gdb.threads/vfork-multi-inferior.c, line 25.
(gdb) PASS: gdb.threads/vfork-multi-inferior.exp: method=non-stop: break should_break_here
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
start
Temporary breakpoint 2 at 0x11c0: -qualified main. (2 locations)
Starting program: /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/tmp/tmp.GYATAXR8Ku/gdb/testsuite/outputs/gdb.threads/vfork-multi-inferior/vfork-multi-inferior
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Thread 2.1 "vfork-multi-inf" hit Temporary breakpoint 2, main () at /home/jenkins/workspace/binutils-gdb_master_linuxbuild/platform/jammy-amd64/target_board/unix/src/binutils-gdb/gdb/testsuite/gdb.threads/vfork-multi-inferior-sleep.c:23
23 sleep (30);
(gdb) FAIL: gdb.threads/vfork-multi-inferior.exp: method=non-stop: start inferior 1
What happens is:
1. We start inferior 2 with "run&", it runs very slowly, takes time to
get to main
2. We switch to inferior 1, and run "start"
3. The temporary breakpoint inserted by "start" applies to all inferiors
4. Inferior 2 hits that breakpoint and GDB reports that hit
To avoid this, breakpoints inserted by "start" should be
inferior-specific. However, we don't have a nice way to make
inferior-specific breakpoints yet. It's possible to make
pspace-specific breakpoints (for example how the internal_breakpoint
constructor does) by creating a symtab_and_line manually. However,
inferiors can share program spaces (usually on particular embedded
targets), so we could have a situation where two inferiors run the same
code in the same program space. In that case, it would just not be
possible to insert a breakpoint in one inferior but not the other.
A simple solution that should work all the time is to add a condition to
the breakpoint inserted by "start", to check the inferior reporting the
hit is the expected one. This is what this patch implements.
Add a test that does:
- start in background inferior 1 that sleeps before reaching its main
function (using a sleep in a global C++ object's constructor)
- start inferior 2 with the "start" command, which also sleeps before
reaching its main function
- validate that we hit the breakpoint in inferior 2
Without the fix, we hit the breakpoint in inferior 1 pretty much all the
time. There could be some unfortunate scheduling causing the test not
to catch the bug, for instance if the scheduler decides not to schedule
inferior 1 for a long time, but it would be really rare. If the bug is
re-introduced, the test will catch it much more often than not, so it
will be noticed.
Reviewed-By: Bruno Larsen <blarsen@redhat.com>
Approved-By: Pedro Alves <pedro@palves.net>
Change-Id: Ib0148498a476bfa634ed62353c95f163623c686a
Currently, every internal_error call must be passed __FILE__/__LINE__
explicitly, like:
internal_error (__FILE__, __LINE__, "foo %d", var);
The need to pass in explicit __FILE__/__LINE__ is there probably
because the function predates widespread and portable variadic macros
availability. We can use variadic macros nowadays, and in fact, we
already use them in several places, including the related
gdb_assert_not_reached.
So this patch renames the internal_error function to something else,
and then reimplements internal_error as a variadic macro that expands
__FILE__/__LINE__ itself.
The result is that we now should call internal_error like so:
internal_error ("foo %d", var);
Likewise for internal_warning.
The patch adjusts all calls sites. 99% of the adjustments were done
with a perl/sed script.
The non-mechanical changes are in gdbsupport/errors.h,
gdbsupport/gdb_assert.h, and gdb/gdbarch.py.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Change-Id: Ia6f372c11550ca876829e8fd85048f4502bdcf06
Currently, despite having a smart pointer for frame_infos, GDB may
attempt to use an invalidated frame_info_ptr, which would cause internal
errors to happen. One such example has been documented as PR
python/28856, that happened when printing frame arguments calls an
inferior function.
To avoid failures, the smart wrapper was changed to also cache the frame
id, so the pointer can be reinflated later. For this to work, the
frame-id stuff had to be moved to their own .h file, which is included
by frame-info.h.
Frame_id caching is done explicitly using the prepare_reinflate method.
Caching is done manually so that only the pointers that need to be saved
will be, and reinflating has to be done manually using the reinflate
method because the get method and the -> operator must not change
the internals of the class. Finally, attempting to reinflate when the
pointer is being invalidated causes the following assertion errors:
check_ptrace_stopped_lwp_gone: assertion `lp->stopped` failed.
get_frame_pc: Assertion `frame->next != NULL` failed.
As for performance concerns, my personal testing with `time make
chec-perf GDB_PERFTEST_MODE=run` showed an actual reduction of around
10% of time running.
This commit also adds a testcase that exercises the python/28856 bug with
7 different triggers, run, continue, step, backtrace, finish, up and down.
Some of them can seem to be testing the same thing twice, but since this
test relies on stale pointers, there is always a chance that GDB got lucky
when testing, so better to test extra.
Regression tested on x86_64, using both gcc and clang.
Approved-by: Tom Tomey <tom@tromey.com>
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
After the previous few commit, gdbarch_register_name no longer returns
nullptr. This commit audits all the calls to gdbarch_register_name
and removes any code that checks the result against nullptr.
There should be no visible change after this commit.
'finish_print' does not really belong in value_print_options -- this
is consulted only when deciding whether or not to print a value, and
never during the course of printing. This patch removes it from the
structure and makes it a static global in infcmd.c instead.
Tested on x86-64 Fedora 34.
While working on this patch:
https://sourceware.org/pipermail/gdb-patches/2022-January/185109.html
I found it really useful to print the executing/resumed status of all
threads (or all threads in a particular inferior) at various
places (e.g. when a new inferior is started, when GDB attaches, etc).
This debug was originally part of the above patch, but I wanted to
rewrite this as a separate patch and move the code into a new function
in infrun.h, which is what this patch does.
Unless 'set debug infrun on' is in effect, then there should be no
user visible changes after this commit.
Move 'struct reggroup' into the reggroups.h header. Remove the
reggroup_name and reggroup_type accessor functions, and just use the
name/type member functions within 'struct reggroup', update all uses
of these removed functions.
There should be no user visible changes after this commit.
Add a new function gdbarch_reggroups that returns a reference to a
vector containing all the reggroups for an architecture.
Make use of this function throughout GDB instead of the existing
reggroup_next and reggroup_prev functions.
Finally, delete the reggroup_next and reggroup_prev functions.
Most of these changes are pretty straight forward, using range based
for loops instead of the old style look using reggroup_next. There
are two places where the changes are less straight forward.
In gdb/python/py-registers.c, the register group iterator needed to
change slightly. As the iterator is tightly coupled to the gdbarch, I
just fetch the register group vector from the gdbarch when needed, and
use an index counter to find the next item from the vector when
needed.
In gdb/tui/tui-regs.c the tui_reg_next and tui_reg_prev functions are
just wrappers around reggroup_next and reggroup_prev respectively.
I've just inlined the logic of the old functions into the tui
functions. As the tui function had its own special twist (wrap around
behaviour) I think this is OK.
There should be no user visible changes after this commit.
Add a "reason" parameter, only used to show in debug messages what is
the reason for stopping all threads. This helped me understand the
debug logs while adding some new uses of stop_all_threads, so I am
proposing to merge it.
Change-Id: I66c8c335ebf41836a7bc3d5fe1db92c195f65e55
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
A number of spots call printf_unfiltered only because they are in code
that should not be interrupted by the pager. However, I believe these
cases are all handled by infrun's blanket ban on paging, and so can be
converted to the default (_filtered) API.
After this patch, I think all the remaining _unfiltered calls are ones
that really ought to be. A few -- namely in complete_command -- could
be replaced by a scoped assignment to pagination_enabled, but for the
remainder, the code seems simple enough like this.
It is possible for a compiler to optimize a function in a such ways that
the function does not follow the calling convention of the target. In
such situation, the compiler can use the DW_AT_calling_convention
attribute with the value DW_CC_nocall to tell the debugger that it is
unsafe to call the function. The DWARF5 standard states, in 3.3.1.1:
> If the value of the calling convention attribute is the constant
> DW_CC_nocall, the subroutine does not obey standard calling
> conventions, and it may not be safe for the debugger to call this
> subroutine.
Non standard calling convention can affect GDB's assumptions in multiple
ways, including how arguments are passed to the function, how values are
returned, and so on. For this reason, it is unsafe for GDB to try to do
the following operations on a function with marked with DW_CC_nocall:
- call / print an expression requiring the function to be evaluated,
- inspect the value a function returns using the 'finish' command,
- force the value returned by a function using the 'return' command.
This patch ensures that if a command which relies on GDB's knowledge of
the target's calling convention is used on a function marked nocall, GDB
prints an appropriate message to the user and does not proceed with the
operation which is unreliable.
Note that it is still possible for someone to use a vendor specific
value for the DW_AT_calling_convention attribute for example to indicate
the use of an alternative calling convention. This commit does not
prevent this, and target dependent code can be adjusted if one wanted to
support multiple calling conventions.
Tested on x86_64-Linux, with no regression observed.
Change-Id: I72970dae68234cb83edbc0cf71aa3d6002a4a540
Add an argument to the get_return_value function to indicate the symbol
of the function the debuggee is returning from. This will be used by
the following patch.
Since the function return type can be deduced from the symbol remove the
value_type argument which becomes redundant.
No user visible change after this patch.
Tested on x86_64-linux.
Change-Id: Idf1279f1f7199f5022738a6679e0fa63fbd22edc
Co-authored-by: Simon Marchi <simon.marchi@polymtl.ca>
When using the command "until", it is expected that GDB will exit a
loop if the current instruction is the last one related to that loop.
However, if there were trailing non-statement instructions, "until"
would just behave as "next". This was noticeable in clang-compiled
code, but might happen with gcc-compiled as well. PR gdb/17315 relates
to this problem, as running gdb.base/watchpoint.exp with clang
would fail for this reason.
To better understand this issue, consider the following source code,
with line numbers marked on the left:
10: for (i = 0; i < 10; ++i)
11: loop_body ();
12: other_stuff ();
If we transform this to pseudo-assembler, and generate a line table,
we could end up with something like this:
Address | Pseudo-Assembler | Line | Is-Statement?
0x100 | i = 0 | 10 | Yes
0x104 | loop_body () | 11 | Yes
0x108 | i = i + 1 | 10 | Yes
0x10c | if (i < 10): | 10 | No
0x110 | goto 0x104 | 10 | No
0x114 | other_stuff () | 12 | Yes
Notice the two non-statement instructions at the end of the loop.
The problem is that when we reach address 0x108 and use 'until',
hoping to leave the loop, GDB sets up a stepping range that runs from
the start of the function (0x100 in our example) to the end of the
current line table entry, that is 0x10c in our example. GDB then
starts stepping forward.
When 0x10c is reached GDB spots that we have left the stepping range,
that the new location is not a statement, and that the new location is
associated with the same source line number as the previous stepping
range. GDB then sets up a new stepping range that runs from 0x10c to
0x114, and continues stepping forward.
Within that stepping range the inferior hits the goto (at 0x110) and
loops back to address 0x104.
At 0x104 GDB spots that we have left the previous stepping range, that
the new address is marked as a statement, and that the new address is
for a different source line. As a result, GDB stops and returns
control to the user. This is not what the user was expecting, they
expected GDB to exit the loop.
The fix proposed in this patch, is that, when the user issues the
'until' command, and GDB sets up the initial stepping range, GDB will
check subsequent SALs (symtab_and_lines) to see if they are
non-statements associated with the same line number. If they are then
the end of the initial stepping range is extended to the end of the
non-statement SALs.
In our example above, the user is at 0x108 and uses 'until', GDB now
sets up a stepping range from the start of the function 0x100 to
0x114, the first address associated with a different line.
Now as GDB steps around the loop it never leaves the initial stepping
range. It is only when GDB exits the loop that we leave the stepping
range, and the stepping finishes at address 0x114.
This patch also adds a test case that can be run with gcc to test that
this functionality is not broken in the future.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=17315
While working on function calls, I realized that the thread_fsm member
of struct thread_info is a raw pointer to a resource it owns. This
commit changes the type of the thread_fsm member to a std::unique_ptr in
order to signify this ownership relationship and slightly ease resource
management (no need to manually call delete).
To ensure consistent use, the field is made a private member
(m_thread_fsm). The setter method (set_thread_fsm) can then check
that it is incorrect to associate a FSM to a thread_info object if
another one is already in place. This is ensured by an assertion.
The function run_inferior_call takes an argument as a pointer to a
call_thread_fsm and installs it in it in a thread_info instance. Also
change this function's signature to accept a unique_ptr in order to
signify that the ownership of the call_thread_fsm is transferred during
the call.
No user visible change expected after this commit.
Tested on x86_64-linux with no regression observed.
Change-Id: Ia1224f72a4afa247801ce6650ce82f90224a9ae8
Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
In an earlier version of the pager rewrite series, it was important to
audit unfiltered output calls to see which were truly necessary.
This is no longer necessary, but it still seems like a decent cleanup
to change calls to avoid explicitly passing gdb_stdout. That is,
rather than using something like fprintf_unfiltered with gdb_stdout,
the code ought to use plain printf_unfiltered instead.
This patch makes this change. I went ahead and converted all the
_filtered calls I could find, as well, for the same clarity.