mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-20 01:50:24 +08:00
Johns release
This commit is contained in:
515
gdb/tm-np1.h
Normal file
515
gdb/tm-np1.h
Normal file
@ -0,0 +1,515 @@
|
||||
/* Parameters for targeting on a Gould NP1, for GDB, the GNU debugger.
|
||||
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
GDB is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 1, or (at your option)
|
||||
any later version.
|
||||
|
||||
GDB is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GDB; see the file COPYING. If not, write to
|
||||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||||
|
||||
#define GOULD_NPL
|
||||
|
||||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||||
|
||||
/* N_ENTRY appears in libraries on Gould machines.
|
||||
Don't know what 0xa4 is; it's mentioned in stab.h
|
||||
but only in the sdb symbol list. */
|
||||
#define IGNORE_SYMBOL(type) (type == N_ENTRY || type == 0xa4)
|
||||
|
||||
/* We don't want the extra gnu symbols on the machine;
|
||||
they will interfere with the shared segment symbols. */
|
||||
#define NO_GNU_STABS
|
||||
|
||||
/* Macro for text-offset and data info (in NPL a.out format). */
|
||||
#define TEXTINFO \
|
||||
text_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr); \
|
||||
exec_data_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr)\
|
||||
+ exec_aouthdr.a_text
|
||||
|
||||
/* Macro for number of symbol table entries */
|
||||
#define NUMBER_OF_SYMBOLS \
|
||||
(coffhdr.f_nsyms)
|
||||
|
||||
/* Macro for file-offset of symbol table (in NPL a.out format). */
|
||||
#define SYMBOL_TABLE_OFFSET \
|
||||
N_SYMOFF (coffhdr)
|
||||
|
||||
/* Macro for file-offset of string table (in NPL a.out format). */
|
||||
#define STRING_TABLE_OFFSET \
|
||||
(N_STROFF (coffhdr))
|
||||
|
||||
/* Macro to store the length of the string table data in INTO. */
|
||||
#define READ_STRING_TABLE_SIZE(INTO) \
|
||||
{ INTO = hdr.a_stsize; }
|
||||
|
||||
/* Macro to declare variables to hold the file's header data. */
|
||||
#define DECLARE_FILE_HEADERS struct exec hdr; \
|
||||
FILHDR coffhdr
|
||||
|
||||
/* Macro to read the header data from descriptor DESC and validate it.
|
||||
NAME is the file name, for error messages. */
|
||||
#define READ_FILE_HEADERS(DESC, NAME) \
|
||||
{ val = myread (DESC, &coffhdr, sizeof coffhdr); \
|
||||
if (val < 0) \
|
||||
perror_with_name (NAME); \
|
||||
val = myread (DESC, &hdr, sizeof hdr); \
|
||||
if (val < 0) \
|
||||
perror_with_name (NAME); \
|
||||
if (coffhdr.f_magic != GNP1MAGIC) \
|
||||
error ("File \"%s\" not in coff executable format.", NAME); \
|
||||
if (N_BADMAG (hdr)) \
|
||||
error ("File \"%s\" not in executable format.", NAME); }
|
||||
|
||||
/* Define COFF and other symbolic names needed on NP1 */
|
||||
#define NS32GMAGIC GNP1MAGIC
|
||||
#define NS32SMAGIC GPNMAGIC
|
||||
|
||||
/* Define this if the C compiler puts an underscore at the front
|
||||
of external names before giving them to the linker. */
|
||||
#define NAMES_HAVE_UNDERSCORE
|
||||
|
||||
/* Debugger information will be in DBX format. */
|
||||
#define READ_DBX_FORMAT
|
||||
|
||||
/* Address of blocks in N_LBRAC and N_RBRAC symbols are absolute addresses,
|
||||
not relative to start of source address. */
|
||||
#define BLOCK_ADDRESS_ABSOLUTE
|
||||
|
||||
/* Offset from address of function to start of its code.
|
||||
Zero on most machines. */
|
||||
#define FUNCTION_START_OFFSET 8
|
||||
|
||||
/* Advance PC across any function entry prologue instructions
|
||||
to reach some "real" code. One NPL we can have one two startup
|
||||
sequences depending on the size of the local stack:
|
||||
|
||||
Either:
|
||||
"suabr b2, #"
|
||||
of
|
||||
"lil r4, #", "suabr b2, #(r4)"
|
||||
|
||||
"lwbr b6, #", "stw r1, 8(b2)"
|
||||
Optional "stwbr b3, c(b2)"
|
||||
Optional "trr r2,r7" (Gould first argument register passing)
|
||||
or
|
||||
Optional "stw r2,8(b3)" (Gould first argument register passing)
|
||||
*/
|
||||
#define SKIP_PROLOGUE(pc) { \
|
||||
register int op = read_memory_integer ((pc), 4); \
|
||||
if ((op & 0xffff0000) == 0xFA0B0000) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if ((op & 0xffff0000) == 0x59400000) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if ((op & 0xffff0000) == 0x5F000000) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0xD4820008) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0x5582000C) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 2); \
|
||||
if (op == 0x2fa0) { \
|
||||
pc += 2; \
|
||||
} else { \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0xd5030008) { \
|
||||
pc += 4; \
|
||||
} \
|
||||
} \
|
||||
} else { \
|
||||
op = read_memory_integer ((pc), 2); \
|
||||
if (op == 0x2fa0) { \
|
||||
pc += 2; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
if ((op & 0xffff0000) == 0x59000000) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if ((op & 0xffff0000) == 0x5F000000) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0xD4820008) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0x5582000C) { \
|
||||
pc += 4; \
|
||||
op = read_memory_integer ((pc), 2); \
|
||||
if (op == 0x2fa0) { \
|
||||
pc += 2; \
|
||||
} else { \
|
||||
op = read_memory_integer ((pc), 4); \
|
||||
if (op == 0xd5030008) { \
|
||||
pc += 4; \
|
||||
} \
|
||||
} \
|
||||
} else { \
|
||||
op = read_memory_integer ((pc), 2); \
|
||||
if (op == 0x2fa0) { \
|
||||
pc += 2; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Immediately after a function call, return the saved pc.
|
||||
Can't go through the frames for this because on some machines
|
||||
the new frame is not set up until the new function executes
|
||||
some instructions. True on NPL! Return address is in R1.
|
||||
The true return address is REALLY 4 past that location! */
|
||||
#define SAVED_PC_AFTER_CALL(frame) \
|
||||
(read_register(R1_REGNUM) + 4)
|
||||
|
||||
/* Address of end of stack space. */
|
||||
#define STACK_END_ADDR 0x7fffc000
|
||||
|
||||
/* Stack grows downward. */
|
||||
#define INNER_THAN <
|
||||
|
||||
/* Sequence of bytes for breakpoint instruction.
|
||||
This is padded out to the size of a machine word. When it was just
|
||||
{0x28, 0x09} it gave problems if hit breakpoint on returning from a
|
||||
function call. */
|
||||
#define BREAKPOINT {0x28, 0x09, 0x0, 0x0}
|
||||
|
||||
/* Amount PC must be decremented by after a breakpoint.
|
||||
This is often the number of bytes in BREAKPOINT
|
||||
but not always. */
|
||||
#define DECR_PC_AFTER_BREAK 2
|
||||
|
||||
/* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
|
||||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x40100004)
|
||||
|
||||
/* Return 1 if P points to an invalid floating point value. */
|
||||
#define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
|
||||
|
||||
/* Say how long (ordinary) registers are. */
|
||||
#define REGISTER_TYPE long
|
||||
|
||||
/* Size of bytes of vector register (NP1 only), 32 elements * sizeof(int) */
|
||||
#define VR_SIZE 128
|
||||
|
||||
/* Number of machine registers */
|
||||
#define NUM_REGS 27
|
||||
#define NUM_GEN_REGS 16
|
||||
#define NUM_CPU_REGS 4
|
||||
#define NUM_VECTOR_REGS 7
|
||||
|
||||
/* Initializer for an array of names of registers.
|
||||
There should be NUM_REGS strings in this initializer. */
|
||||
#define REGISTER_NAMES { \
|
||||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||||
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
|
||||
"sp", "ps", "pc", "ve", \
|
||||
"v1", "v2", "v3", "v4", "v5", "v6", "v7", \
|
||||
}
|
||||
|
||||
/* Register numbers of various important registers.
|
||||
Note that some of these values are "real" register numbers,
|
||||
and correspond to the general registers of the machine,
|
||||
and some are "phony" register numbers which are too large
|
||||
to be actual register numbers as far as the user is concerned
|
||||
but do serve to get the desired values when passed to read_register. */
|
||||
#define R1_REGNUM 1 /* Gr1 => return address of caller */
|
||||
#define R2_REGNUM 2 /* Gr2 => return value from function */
|
||||
#define R4_REGNUM 4 /* Gr4 => register save area */
|
||||
#define R5_REGNUM 5 /* Gr5 => register save area */
|
||||
#define R6_REGNUM 6 /* Gr6 => register save area */
|
||||
#define R7_REGNUM 7 /* Gr7 => register save area */
|
||||
#define B1_REGNUM 9 /* Br1 => start of this code routine */
|
||||
#define SP_REGNUM 10 /* Br2 == (sp) */
|
||||
#define AP_REGNUM 11 /* Br3 == (ap) */
|
||||
#define FP_REGNUM 16 /* A copy of Br2 saved in trap */
|
||||
#define PS_REGNUM 17 /* Contains processor status */
|
||||
#define PC_REGNUM 18 /* Contains program counter */
|
||||
#define VE_REGNUM 19 /* Vector end (user setup) register */
|
||||
#define V1_REGNUM 20 /* First vector register */
|
||||
#define V7_REGNUM 26 /* First vector register */
|
||||
|
||||
/* Total amount of space needed to store our copies of the machine's
|
||||
register state, the array `registers'. */
|
||||
#define REGISTER_BYTES \
|
||||
(NUM_GEN_REGS*4 + NUM_VECTOR_REGS*VR_SIZE + NUM_CPU_REGS*4)
|
||||
|
||||
/* Index within `registers' of the first byte of the space for
|
||||
register N. */
|
||||
#define REGISTER_BYTE(N) \
|
||||
(((N) < V1_REGNUM) ? ((N) * 4) : (((N) - V1_REGNUM) * VR_SIZE) + 80)
|
||||
|
||||
/* Number of bytes of storage in the actual machine representation
|
||||
for register N. On the NP1, all normal regs are 4 bytes, but
|
||||
the vector registers are VR_SIZE*4 bytes long. */
|
||||
#define REGISTER_RAW_SIZE(N) \
|
||||
(((N) < V1_REGNUM) ? 4 : VR_SIZE)
|
||||
|
||||
/* Number of bytes of storage in the program's representation
|
||||
for register N. On the NP1, all regs are 4 bytes. */
|
||||
#define REGISTER_VIRTUAL_SIZE(N) \
|
||||
(((N) < V1_REGNUM) ? 4 : VR_SIZE)
|
||||
|
||||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||||
#define MAX_REGISTER_RAW_SIZE VR_SIZE
|
||||
|
||||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||||
#define MAX_REGISTER_VIRTUAL_SIZE VR_SIZE
|
||||
|
||||
/* Nonzero if register N requires conversion
|
||||
from raw format to virtual format. */
|
||||
#define REGISTER_CONVERTIBLE(N) (0)
|
||||
|
||||
/* Convert data from raw format for register REGNUM
|
||||
to virtual format for register REGNUM. */
|
||||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||||
bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
|
||||
|
||||
/* Convert data from virtual format for register REGNUM
|
||||
to raw format for register REGNUM. */
|
||||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||||
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
|
||||
|
||||
/* Return the GDB type object for the "standard" data type
|
||||
of data in register N. */
|
||||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||||
((N) > VE_REGNUM ? builtin_type_np1_vector : builtin_type_int)
|
||||
extern struct type *builtin_type_np1_vector;
|
||||
|
||||
/* Store the address of the place in which to copy the structure the
|
||||
subroutine will return. This is called from call_function.
|
||||
|
||||
On this machine this is a no-op, because gcc isn't used on it
|
||||
yet. So this calling convention is not used. */
|
||||
|
||||
#define STORE_STRUCT_RETURN(ADDR, SP) push_word(SP + 8, ADDR)
|
||||
|
||||
/* Extract from an arrary REGBUF containing the (raw) register state
|
||||
a function return value of type TYPE, and copy that, in virtual format,
|
||||
into VALBUF. */
|
||||
|
||||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||||
bcopy (((int *)(REGBUF)) + 2, VALBUF, TYPE_LENGTH (TYPE))
|
||||
|
||||
/* Write into appropriate registers a function return value
|
||||
of type TYPE, given in virtual format. */
|
||||
|
||||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||||
write_register_bytes (REGISTER_BYTE (R2_REGNUM), VALBUF, \
|
||||
TYPE_LENGTH (TYPE))
|
||||
|
||||
/* Extract from an array REGBUF containing the (raw) register state
|
||||
the address in which a function should return its structure value,
|
||||
as a CORE_ADDR (or an expression that can be used as one). */
|
||||
|
||||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*((int *)(REGBUF) + 2))
|
||||
|
||||
/* Both gcc and cc return small structs in registers (i.e. in GDB
|
||||
terminology, small structs don't use the struct return convention). */
|
||||
#define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH(type) > 8)
|
||||
|
||||
/* Describe the pointer in each stack frame to the previous stack frame
|
||||
(its caller). */
|
||||
|
||||
/* FRAME_CHAIN takes a frame's nominal address
|
||||
and produces the frame's chain-pointer.
|
||||
|
||||
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
||||
and produces the nominal address of the caller frame.
|
||||
|
||||
However, if FRAME_CHAIN_VALID returns zero,
|
||||
it means the given frame is the outermost one and has no caller.
|
||||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||||
|
||||
/* In the case of the NPL, the frame's norminal address is Br2 and the
|
||||
previous routines frame is up the stack X bytes, where X is the
|
||||
value stored in the code function header xA(Br1). */
|
||||
#define FRAME_CHAIN(thisframe) (findframe(thisframe))
|
||||
|
||||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||||
(chain != 0 && chain != (thisframe)->frame)
|
||||
|
||||
#define FRAME_CHAIN_COMBINE(chain, thisframe) \
|
||||
(chain)
|
||||
|
||||
/* Define other aspects of the stack frame on NPL. */
|
||||
#define FRAME_SAVED_PC(FRAME) \
|
||||
(read_memory_integer ((FRAME)->frame + 8, 4))
|
||||
|
||||
#define FRAME_ARGS_ADDRESS(fi) \
|
||||
((fi)->next_frame ? \
|
||||
read_memory_integer ((fi)->frame + 12, 4) : \
|
||||
read_register (AP_REGNUM))
|
||||
|
||||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||||
|
||||
/* Set VAL to the number of args passed to frame described by FI.
|
||||
Can set VAL to -1, meaning no way to tell. */
|
||||
|
||||
/* We can check the stab info to see how
|
||||
many arg we have. No info in stack will tell us */
|
||||
#define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
|
||||
|
||||
/* Return number of bytes at start of arglist that are not really args. */
|
||||
#define FRAME_ARGS_SKIP 8
|
||||
|
||||
/* Put here the code to store, into a struct frame_saved_regs,
|
||||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||||
This includes special registers such as pc and fp saved in special
|
||||
ways in the stack frame. sp is even more special:
|
||||
the address we return for it IS the sp for the next frame. */
|
||||
|
||||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||||
{ \
|
||||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||||
(frame_saved_regs).regs[SP_REGNUM] = framechain (frame_info); \
|
||||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \
|
||||
(frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \
|
||||
(frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \
|
||||
(frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \
|
||||
(frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \
|
||||
}
|
||||
|
||||
/* Things needed for making the inferior call functions. */
|
||||
|
||||
#define CANNOT_EXECUTE_STACK
|
||||
|
||||
/* Push an empty stack frame, to record the current PC, etc. */
|
||||
|
||||
#define PUSH_DUMMY_FRAME \
|
||||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||||
register int regnum; \
|
||||
for (regnum = 0; regnum < FP_REGNUM; regnum++) \
|
||||
sp = push_word (sp, read_register (regnum)); \
|
||||
sp = push_word (sp, read_register (PS_REGNUM)); \
|
||||
sp = push_word (sp, read_register (PC_REGNUM)); \
|
||||
write_register (SP_REGNUM, sp);}
|
||||
|
||||
/* Discard from the stack the innermost frame,
|
||||
restoring all saved registers. */
|
||||
|
||||
#define POP_FRAME \
|
||||
{ CORE_ADDR sp = read_register(SP_REGNUM); \
|
||||
REGISTER_TYPE reg; \
|
||||
int regnum; \
|
||||
for(regnum = 0;regnum < FP_REGNUM;regnum++){ \
|
||||
sp-=sizeof(REGISTER_TYPE); \
|
||||
read_memory(sp,®,sizeof(REGISTER_TYPE)); \
|
||||
write_register(regnum,reg);} \
|
||||
sp-=sizeof(REGISTER_TYPE); \
|
||||
read_memory(sp,®,sizeof(REGISTER_TYPE)); \
|
||||
write_register(PS_REGNUM,reg); \
|
||||
sp-=sizeof(REGISTER_TYPE); \
|
||||
read_memory(sp,®,sizeof(REGISTER_TYPE)); \
|
||||
write_register(PC_REGNUM,reg);}
|
||||
|
||||
/* MJD - Size of dummy frame pushed onto stack by PUSH_DUMMY_FRAME */
|
||||
|
||||
#define DUMMY_FRAME_SIZE (0x48)
|
||||
|
||||
/* MJD - The sequence of words in the instructions is
|
||||
halt
|
||||
halt
|
||||
halt
|
||||
halt
|
||||
subr b2,stack size,0 grab stack space for dummy call
|
||||
labr b3,x0(b2),0 set AP_REGNUM to point at arguments
|
||||
lw r2,x8(b3),0 load r2 with first argument
|
||||
lwbr b1,arguments size(b2),0 load address of function to be called
|
||||
brlnk r1,x8(b1),0 call function
|
||||
halt
|
||||
halt
|
||||
labr b2,stack size(b2),0 give back stack
|
||||
break break
|
||||
*/
|
||||
|
||||
#define CALL_DUMMY {0x00000000, \
|
||||
0x00000000, \
|
||||
0x59000000, \
|
||||
0x598a0000, \
|
||||
0xb5030008, \
|
||||
0x5c820000, \
|
||||
0x44810008, \
|
||||
0x00000000, \
|
||||
0x590a0000, \
|
||||
0x28090000 }
|
||||
|
||||
#define CALL_DUMMY_LENGTH 40
|
||||
|
||||
#define CALL_DUMMY_START_OFFSET 8
|
||||
|
||||
#define CALL_DUMMY_STACK_ADJUST 8
|
||||
|
||||
/* MJD - Fixup CALL_DUMMY for the specific function call.
|
||||
OK heres the problems
|
||||
1) On a trap there are two copies of the stack pointer, one in SP_REGNUM
|
||||
which is read/write and one in FP_REGNUM which is only read. It seems
|
||||
that when restarting the GOULD NP1 uses FP_REGNUM's value.
|
||||
2) Loading function address into b1 looks a bit difficult if bigger than
|
||||
0x0000fffc, infact from what I can tell the compiler sets up table of
|
||||
function address in base3 through which function calls are referenced.
|
||||
|
||||
OK my solutions
|
||||
Calculate the size of the dummy stack frame and do adjustments of
|
||||
SP_REGNUM in the dummy call.
|
||||
Push function address onto the stack and load it in the dummy call
|
||||
*/
|
||||
|
||||
#define FIX_CALL_DUMMY(dummyname, sp, fun, nargs, args, type, gcc_p) \
|
||||
{ int i;\
|
||||
int arg_len = 0, total_len;\
|
||||
old_sp = push_word(old_sp,fun);\
|
||||
for(i = nargs - 1;i >= 0;i--)\
|
||||
arg_len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));\
|
||||
if(struct_return)\
|
||||
arg_len += TYPE_LENGTH(value_type);\
|
||||
total_len = DUMMY_FRAME_SIZE+CALL_DUMMY_STACK_ADJUST+4+arg_len;\
|
||||
dummyname[0] += total_len;\
|
||||
dummyname[2] += total_len;\
|
||||
dummyname[5] += arg_len+CALL_DUMMY_STACK_ADJUST;\
|
||||
dummyname[8] += total_len;}
|
||||
|
||||
/* MJD - So the stack should end up looking like this
|
||||
|
||||
| Normal stack frame |
|
||||
| from normal program |
|
||||
| flow |
|
||||
+---------------------+ <- Final sp - 0x08 - argument size
|
||||
| | - 0x4 - dummy_frame_size
|
||||
| Pushed dummy frame |
|
||||
| b0-b7, r0-r7 |
|
||||
| pc and ps |
|
||||
| |
|
||||
+---------------------+
|
||||
| Function address |
|
||||
+---------------------+ <- Final sp - 0x8 - arguments size
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| Arguments to |
|
||||
| Function |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
+---------------------+ <- Final sp - 0x8
|
||||
| Dummy_stack_adjust |
|
||||
+---------------------+ <- Final sp
|
||||
| |
|
||||
| where call will |
|
||||
| build frame |
|
||||
*/
|
Reference in New Issue
Block a user