mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-20 09:58:19 +08:00
Initial creation of sourceware repository
This commit is contained in:
791
gdb/mn10300-tdep.c
Normal file
791
gdb/mn10300-tdep.c
Normal file
@ -0,0 +1,791 @@
|
||||
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
||||
Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "obstack.h"
|
||||
#include "target.h"
|
||||
#include "value.h"
|
||||
#include "bfd.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdbcore.h"
|
||||
#include "symfile.h"
|
||||
|
||||
static char *mn10300_generic_register_names[] =
|
||||
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
||||
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
||||
"", "", "", "", "", "", "", "",
|
||||
"", "", "", "", "", "", "", "fp" };
|
||||
|
||||
char **mn10300_register_names = mn10300_generic_register_names;
|
||||
|
||||
static CORE_ADDR mn10300_analyze_prologue PARAMS ((struct frame_info *fi,
|
||||
CORE_ADDR pc));
|
||||
|
||||
/* Additional info used by the frame */
|
||||
|
||||
struct frame_extra_info
|
||||
{
|
||||
int status;
|
||||
int stack_size;
|
||||
};
|
||||
|
||||
static struct frame_info *analyze_dummy_frame PARAMS ((CORE_ADDR, CORE_ADDR));
|
||||
static struct frame_info *
|
||||
analyze_dummy_frame (pc, frame)
|
||||
CORE_ADDR pc;
|
||||
CORE_ADDR frame;
|
||||
{
|
||||
static struct frame_info *dummy = NULL;
|
||||
if (dummy == NULL)
|
||||
{
|
||||
dummy = xmalloc (sizeof (struct frame_info));
|
||||
dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
|
||||
dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
|
||||
}
|
||||
dummy->next = NULL;
|
||||
dummy->prev = NULL;
|
||||
dummy->pc = pc;
|
||||
dummy->frame = frame;
|
||||
dummy->extra_info->status = 0;
|
||||
dummy->extra_info->stack_size = 0;
|
||||
memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
|
||||
mn10300_analyze_prologue (dummy, 0);
|
||||
return dummy;
|
||||
}
|
||||
|
||||
/* Values for frame_info.status */
|
||||
|
||||
#define MY_FRAME_IN_SP 0x1
|
||||
#define MY_FRAME_IN_FP 0x2
|
||||
#define NO_MORE_FRAMES 0x4
|
||||
|
||||
|
||||
/* Should call_function allocate stack space for a struct return? */
|
||||
int
|
||||
mn10300_use_struct_convention (gcc_p, type)
|
||||
int gcc_p;
|
||||
struct type *type;
|
||||
{
|
||||
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
|
||||
}
|
||||
|
||||
/* The breakpoint instruction must be the same size as the smallest
|
||||
instruction in the instruction set.
|
||||
|
||||
The Matsushita mn10x00 processors have single byte instructions
|
||||
so we need a single byte breakpoint. Matsushita hasn't defined
|
||||
one, so we defined it ourselves. */
|
||||
|
||||
unsigned char *
|
||||
mn10300_breakpoint_from_pc (bp_addr, bp_size)
|
||||
CORE_ADDR *bp_addr;
|
||||
int *bp_size;
|
||||
{
|
||||
static char breakpoint[] = {0xff};
|
||||
*bp_size = 1;
|
||||
return breakpoint;
|
||||
}
|
||||
|
||||
|
||||
/* Fix fi->frame if it's bogus at this point. This is a helper
|
||||
function for mn10300_analyze_prologue. */
|
||||
|
||||
static void
|
||||
fix_frame_pointer (fi, stack_size)
|
||||
struct frame_info *fi;
|
||||
int stack_size;
|
||||
{
|
||||
if (fi && fi->next == NULL)
|
||||
{
|
||||
if (fi->extra_info->status & MY_FRAME_IN_SP)
|
||||
fi->frame = read_sp () - stack_size;
|
||||
else if (fi->extra_info->status & MY_FRAME_IN_FP)
|
||||
fi->frame = read_register (A3_REGNUM);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Set offsets of registers saved by movm instruction.
|
||||
This is a helper function for mn10300_analyze_prologue. */
|
||||
|
||||
static void
|
||||
set_movm_offsets (fi, movm_args)
|
||||
struct frame_info *fi;
|
||||
int movm_args;
|
||||
{
|
||||
int offset = 0;
|
||||
|
||||
if (fi == NULL || movm_args == 0)
|
||||
return;
|
||||
|
||||
if (movm_args & 0x10)
|
||||
{
|
||||
fi->saved_regs[A3_REGNUM] = fi->frame + offset;
|
||||
offset += 4;
|
||||
}
|
||||
if (movm_args & 0x20)
|
||||
{
|
||||
fi->saved_regs[A2_REGNUM] = fi->frame + offset;
|
||||
offset += 4;
|
||||
}
|
||||
if (movm_args & 0x40)
|
||||
{
|
||||
fi->saved_regs[D3_REGNUM] = fi->frame + offset;
|
||||
offset += 4;
|
||||
}
|
||||
if (movm_args & 0x80)
|
||||
{
|
||||
fi->saved_regs[D2_REGNUM] = fi->frame + offset;
|
||||
offset += 4;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* The main purpose of this file is dealing with prologues to extract
|
||||
information about stack frames and saved registers.
|
||||
|
||||
For reference here's how prologues look on the mn10300:
|
||||
|
||||
With frame pointer:
|
||||
movm [d2,d3,a2,a3],sp
|
||||
mov sp,a3
|
||||
add <size>,sp
|
||||
|
||||
Without frame pointer:
|
||||
movm [d2,d3,a2,a3],sp (if needed)
|
||||
add <size>,sp
|
||||
|
||||
One day we might keep the stack pointer constant, that won't
|
||||
change the code for prologues, but it will make the frame
|
||||
pointerless case much more common. */
|
||||
|
||||
/* Analyze the prologue to determine where registers are saved,
|
||||
the end of the prologue, etc etc. Return the end of the prologue
|
||||
scanned.
|
||||
|
||||
We store into FI (if non-null) several tidbits of information:
|
||||
|
||||
* stack_size -- size of this stack frame. Note that if we stop in
|
||||
certain parts of the prologue/epilogue we may claim the size of the
|
||||
current frame is zero. This happens when the current frame has
|
||||
not been allocated yet or has already been deallocated.
|
||||
|
||||
* fsr -- Addresses of registers saved in the stack by this frame.
|
||||
|
||||
* status -- A (relatively) generic status indicator. It's a bitmask
|
||||
with the following bits:
|
||||
|
||||
MY_FRAME_IN_SP: The base of the current frame is actually in
|
||||
the stack pointer. This can happen for frame pointerless
|
||||
functions, or cases where we're stopped in the prologue/epilogue
|
||||
itself. For these cases mn10300_analyze_prologue will need up
|
||||
update fi->frame before returning or analyzing the register
|
||||
save instructions.
|
||||
|
||||
MY_FRAME_IN_FP: The base of the current frame is in the
|
||||
frame pointer register ($a2).
|
||||
|
||||
NO_MORE_FRAMES: Set this if the current frame is "start" or
|
||||
if the first instruction looks like mov <imm>,sp. This tells
|
||||
frame chain to not bother trying to unwind past this frame. */
|
||||
|
||||
static CORE_ADDR
|
||||
mn10300_analyze_prologue (fi, pc)
|
||||
struct frame_info *fi;
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
CORE_ADDR func_addr, func_end, addr, stop;
|
||||
CORE_ADDR stack_size;
|
||||
int imm_size;
|
||||
unsigned char buf[4];
|
||||
int status, movm_args = 0;
|
||||
char *name;
|
||||
|
||||
/* Use the PC in the frame if it's provided to look up the
|
||||
start of this function. */
|
||||
pc = (fi ? fi->pc : pc);
|
||||
|
||||
/* Find the start of this function. */
|
||||
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
|
||||
|
||||
/* Do nothing if we couldn't find the start of this function or if we're
|
||||
stopped at the first instruction in the prologue. */
|
||||
if (status == 0)
|
||||
return pc;
|
||||
|
||||
/* If we're in start, then give up. */
|
||||
if (strcmp (name, "start") == 0)
|
||||
{
|
||||
if (fi != NULL)
|
||||
fi->extra_info->status = NO_MORE_FRAMES;
|
||||
return pc;
|
||||
}
|
||||
|
||||
/* At the start of a function our frame is in the stack pointer. */
|
||||
if (fi)
|
||||
fi->extra_info->status = MY_FRAME_IN_SP;
|
||||
|
||||
/* Get the next two bytes into buf, we need two because rets is a two
|
||||
byte insn and the first isn't enough to uniquely identify it. */
|
||||
status = read_memory_nobpt (pc, buf, 2);
|
||||
if (status != 0)
|
||||
return pc;
|
||||
|
||||
/* If we're physically on an "rets" instruction, then our frame has
|
||||
already been deallocated. Note this can also be true for retf
|
||||
and ret if they specify a size of zero.
|
||||
|
||||
In this case fi->frame is bogus, we need to fix it. */
|
||||
if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
|
||||
{
|
||||
if (fi->next == NULL)
|
||||
fi->frame = read_sp ();
|
||||
return fi->pc;
|
||||
}
|
||||
|
||||
/* Similarly if we're stopped on the first insn of a prologue as our
|
||||
frame hasn't been allocated yet. */
|
||||
if (fi && fi->pc == func_addr)
|
||||
{
|
||||
if (fi->next == NULL)
|
||||
fi->frame = read_sp ();
|
||||
return fi->pc;
|
||||
}
|
||||
|
||||
/* Figure out where to stop scanning. */
|
||||
stop = fi ? fi->pc : func_end;
|
||||
|
||||
/* Don't walk off the end of the function. */
|
||||
stop = stop > func_end ? func_end : stop;
|
||||
|
||||
/* Start scanning on the first instruction of this function. */
|
||||
addr = func_addr;
|
||||
|
||||
/* Suck in two bytes. */
|
||||
status = read_memory_nobpt (addr, buf, 2);
|
||||
if (status != 0)
|
||||
{
|
||||
fix_frame_pointer (fi, 0);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* First see if this insn sets the stack pointer; if so, it's something
|
||||
we won't understand, so quit now. */
|
||||
if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
|
||||
{
|
||||
if (fi)
|
||||
fi->extra_info->status = NO_MORE_FRAMES;
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Now look for movm [regs],sp, which saves the callee saved registers.
|
||||
|
||||
At this time we don't know if fi->frame is valid, so we only note
|
||||
that we encountered a movm instruction. Later, we'll set the entries
|
||||
in fsr.regs as needed. */
|
||||
if (buf[0] == 0xcf)
|
||||
{
|
||||
/* Extract the register list for the movm instruction. */
|
||||
status = read_memory_nobpt (addr + 1, buf, 1);
|
||||
movm_args = *buf;
|
||||
|
||||
addr += 2;
|
||||
|
||||
/* Quit now if we're beyond the stop point. */
|
||||
if (addr >= stop)
|
||||
{
|
||||
/* Fix fi->frame since it's bogus at this point. */
|
||||
if (fi && fi->next == NULL)
|
||||
fi->frame = read_sp ();
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Get the next two bytes so the prologue scan can continue. */
|
||||
status = read_memory_nobpt (addr, buf, 2);
|
||||
if (status != 0)
|
||||
{
|
||||
/* Fix fi->frame since it's bogus at this point. */
|
||||
if (fi && fi->next == NULL)
|
||||
fi->frame = read_sp ();
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now see if we set up a frame pointer via "mov sp,a3" */
|
||||
if (buf[0] == 0x3f)
|
||||
{
|
||||
addr += 1;
|
||||
|
||||
/* The frame pointer is now valid. */
|
||||
if (fi)
|
||||
{
|
||||
fi->extra_info->status |= MY_FRAME_IN_FP;
|
||||
fi->extra_info->status &= ~MY_FRAME_IN_SP;
|
||||
}
|
||||
|
||||
/* Quit now if we're beyond the stop point. */
|
||||
if (addr >= stop)
|
||||
{
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, 0);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Get two more bytes so scanning can continue. */
|
||||
status = read_memory_nobpt (addr, buf, 2);
|
||||
if (status != 0)
|
||||
{
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, 0);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
}
|
||||
|
||||
/* Next we should allocate the local frame. No more prologue insns
|
||||
are found after allocating the local frame.
|
||||
|
||||
Search for add imm8,sp (0xf8feXX)
|
||||
or add imm16,sp (0xfafeXXXX)
|
||||
or add imm32,sp (0xfcfeXXXXXXXX).
|
||||
|
||||
If none of the above was found, then this prologue has no
|
||||
additional stack. */
|
||||
|
||||
status = read_memory_nobpt (addr, buf, 2);
|
||||
if (status != 0)
|
||||
{
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, 0);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
imm_size = 0;
|
||||
if (buf[0] == 0xf8 && buf[1] == 0xfe)
|
||||
imm_size = 1;
|
||||
else if (buf[0] == 0xfa && buf[1] == 0xfe)
|
||||
imm_size = 2;
|
||||
else if (buf[0] == 0xfc && buf[1] == 0xfe)
|
||||
imm_size = 4;
|
||||
|
||||
if (imm_size != 0)
|
||||
{
|
||||
/* Suck in imm_size more bytes, they'll hold the size of the
|
||||
current frame. */
|
||||
status = read_memory_nobpt (addr + 2, buf, imm_size);
|
||||
if (status != 0)
|
||||
{
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, 0);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Note the size of the stack in the frame info structure. */
|
||||
stack_size = extract_signed_integer (buf, imm_size);
|
||||
if (fi)
|
||||
fi->extra_info->stack_size = stack_size;
|
||||
|
||||
/* We just consumed 2 + imm_size bytes. */
|
||||
addr += 2 + imm_size;
|
||||
|
||||
/* No more prologue insns follow, so begin preparation to return. */
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, stack_size);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* We never found an insn which allocates local stack space, regardless
|
||||
this is the end of the prologue. */
|
||||
/* Fix fi->frame if it's bogus at this point. */
|
||||
fix_frame_pointer (fi, 0);
|
||||
|
||||
/* Note if/where callee saved registers were saved. */
|
||||
set_movm_offsets (fi, movm_args);
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Function: frame_chain
|
||||
Figure out and return the caller's frame pointer given current
|
||||
frame_info struct.
|
||||
|
||||
We don't handle dummy frames yet but we would probably just return the
|
||||
stack pointer that was in use at the time the function call was made? */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_frame_chain (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct frame_info *dummy;
|
||||
/* Walk through the prologue to determine the stack size,
|
||||
location of saved registers, end of the prologue, etc. */
|
||||
if (fi->extra_info->status == 0)
|
||||
mn10300_analyze_prologue (fi, (CORE_ADDR)0);
|
||||
|
||||
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
|
||||
if (fi->extra_info->status & NO_MORE_FRAMES)
|
||||
return 0;
|
||||
|
||||
/* Now that we've analyzed our prologue, determine the frame
|
||||
pointer for our caller.
|
||||
|
||||
If our caller has a frame pointer, then we need to
|
||||
find the entry value of $a3 to our function.
|
||||
|
||||
If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
|
||||
location pointed to by fsr.regs[A3_REGNUM].
|
||||
|
||||
Else it's still in $a3.
|
||||
|
||||
If our caller does not have a frame pointer, then his
|
||||
frame base is fi->frame + -caller's stack size. */
|
||||
|
||||
/* The easiest way to get that info is to analyze our caller's frame.
|
||||
So we set up a dummy frame and call mn10300_analyze_prologue to
|
||||
find stuff for us. */
|
||||
dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
|
||||
|
||||
if (dummy->extra_info->status & MY_FRAME_IN_FP)
|
||||
{
|
||||
/* Our caller has a frame pointer. So find the frame in $a3 or
|
||||
in the stack. */
|
||||
if (fi->saved_regs[A3_REGNUM])
|
||||
return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
|
||||
else
|
||||
return read_register (A3_REGNUM);
|
||||
}
|
||||
else
|
||||
{
|
||||
int adjust = 0;
|
||||
|
||||
adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
|
||||
|
||||
/* Our caller does not have a frame pointer. So his frame starts
|
||||
at the base of our frame (fi->frame) + register save space
|
||||
+ <his size>. */
|
||||
return fi->frame + adjust + -dummy->extra_info->stack_size;
|
||||
}
|
||||
}
|
||||
|
||||
/* Function: skip_prologue
|
||||
Return the address of the first inst past the prologue of the function. */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_skip_prologue (pc)
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
/* We used to check the debug symbols, but that can lose if
|
||||
we have a null prologue. */
|
||||
return mn10300_analyze_prologue (NULL, pc);
|
||||
}
|
||||
|
||||
|
||||
/* Function: pop_frame
|
||||
This routine gets called when either the user uses the `return'
|
||||
command, or the call dummy breakpoint gets hit. */
|
||||
|
||||
void
|
||||
mn10300_pop_frame (frame)
|
||||
struct frame_info *frame;
|
||||
{
|
||||
int regnum;
|
||||
|
||||
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
||||
generic_pop_dummy_frame ();
|
||||
else
|
||||
{
|
||||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||||
|
||||
/* Restore any saved registers. */
|
||||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||||
if (frame->saved_regs[regnum] != 0)
|
||||
{
|
||||
ULONGEST value;
|
||||
|
||||
value = read_memory_unsigned_integer (frame->saved_regs[regnum],
|
||||
REGISTER_RAW_SIZE (regnum));
|
||||
write_register (regnum, value);
|
||||
}
|
||||
|
||||
/* Actually cut back the stack. */
|
||||
write_register (SP_REGNUM, FRAME_FP (frame));
|
||||
|
||||
/* Don't we need to set the PC?!? XXX FIXME. */
|
||||
}
|
||||
|
||||
/* Throw away any cached frame information. */
|
||||
flush_cached_frames ();
|
||||
}
|
||||
|
||||
/* Function: push_arguments
|
||||
Setup arguments for a call to the target. Arguments go in
|
||||
order on the stack. */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
CORE_ADDR sp;
|
||||
unsigned char struct_return;
|
||||
CORE_ADDR struct_addr;
|
||||
{
|
||||
int argnum = 0;
|
||||
int len = 0;
|
||||
int stack_offset = 0;
|
||||
int regsused = struct_return ? 1 : 0;
|
||||
|
||||
/* This should be a nop, but align the stack just in case something
|
||||
went wrong. Stacks are four byte aligned on the mn10300. */
|
||||
sp &= ~3;
|
||||
|
||||
/* Now make space on the stack for the args.
|
||||
|
||||
XXX This doesn't appear to handle pass-by-invisible reference
|
||||
arguments. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
|
||||
|
||||
while (regsused < 2 && arg_length > 0)
|
||||
{
|
||||
regsused++;
|
||||
arg_length -= 4;
|
||||
}
|
||||
len += arg_length;
|
||||
}
|
||||
|
||||
/* Allocate stack space. */
|
||||
sp -= len;
|
||||
|
||||
regsused = struct_return ? 1 : 0;
|
||||
/* Push all arguments onto the stack. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
int len;
|
||||
char *val;
|
||||
|
||||
/* XXX Check this. What about UNIONS? */
|
||||
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
||||
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
||||
{
|
||||
/* XXX Wrong, we want a pointer to this argument. */
|
||||
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
||||
val = (char *)VALUE_CONTENTS (*args);
|
||||
}
|
||||
else
|
||||
{
|
||||
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
||||
val = (char *)VALUE_CONTENTS (*args);
|
||||
}
|
||||
|
||||
while (regsused < 2 && len > 0)
|
||||
{
|
||||
write_register (regsused, extract_unsigned_integer (val, 4));
|
||||
val += 4;
|
||||
len -= 4;
|
||||
regsused++;
|
||||
}
|
||||
|
||||
while (len > 0)
|
||||
{
|
||||
write_memory (sp + stack_offset, val, 4);
|
||||
len -= 4;
|
||||
val += 4;
|
||||
stack_offset += 4;
|
||||
}
|
||||
|
||||
args++;
|
||||
}
|
||||
|
||||
/* Make space for the flushback area. */
|
||||
sp -= 8;
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: push_return_address (pc)
|
||||
Set up the return address for the inferior function call.
|
||||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_push_return_address (pc, sp)
|
||||
CORE_ADDR pc;
|
||||
CORE_ADDR sp;
|
||||
{
|
||||
unsigned char buf[4];
|
||||
|
||||
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
|
||||
write_memory (sp - 4, buf, 4);
|
||||
return sp - 4;
|
||||
}
|
||||
|
||||
/* Function: store_struct_return (addr,sp)
|
||||
Store the structure value return address for an inferior function
|
||||
call. */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_store_struct_return (addr, sp)
|
||||
CORE_ADDR addr;
|
||||
CORE_ADDR sp;
|
||||
{
|
||||
/* The structure return address is passed as the first argument. */
|
||||
write_register (0, addr);
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: frame_saved_pc
|
||||
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
||||
is saved in the stack anywhere, otherwise we get it from the
|
||||
registers. If the inner frame is a dummy frame, return its PC
|
||||
instead of RP, because that's where "caller" of the dummy-frame
|
||||
will be found. */
|
||||
|
||||
CORE_ADDR
|
||||
mn10300_frame_saved_pc (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
int adjust = 0;
|
||||
|
||||
adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
|
||||
adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
|
||||
|
||||
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
|
||||
}
|
||||
|
||||
void
|
||||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
char *raw_buffer;
|
||||
int *optimized;
|
||||
CORE_ADDR *addrp;
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
enum lval_type *lval;
|
||||
{
|
||||
generic_get_saved_register (raw_buffer, optimized, addrp,
|
||||
frame, regnum, lval);
|
||||
}
|
||||
|
||||
/* Function: mn10300_init_extra_frame_info
|
||||
Setup the frame's frame pointer, pc, and frame addresses for saved
|
||||
registers. Most of the work is done in mn10300_analyze_prologue().
|
||||
|
||||
Note that when we are called for the last frame (currently active frame),
|
||||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||||
always be correct. mn10300_analyze_prologue will fix fi->frame if
|
||||
it's not valid.
|
||||
|
||||
We can be called with the PC in the call dummy under two circumstances.
|
||||
First, during normal backtracing, second, while figuring out the frame
|
||||
pointer just prior to calling the target function (see run_stack_dummy). */
|
||||
|
||||
void
|
||||
mn10300_init_extra_frame_info (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
|
||||
frame_saved_regs_zalloc (fi);
|
||||
fi->extra_info = (struct frame_extra_info *)
|
||||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||||
|
||||
fi->extra_info->status = 0;
|
||||
fi->extra_info->stack_size = 0;
|
||||
|
||||
mn10300_analyze_prologue (fi, 0);
|
||||
}
|
||||
|
||||
/* Function: mn10300_virtual_frame_pointer
|
||||
Return the register that the function uses for a frame pointer,
|
||||
plus any necessary offset to be applied to the register before
|
||||
any frame pointer offsets. */
|
||||
|
||||
void
|
||||
mn10300_virtual_frame_pointer (pc, reg, offset)
|
||||
CORE_ADDR pc;
|
||||
long *reg;
|
||||
long *offset;
|
||||
{
|
||||
struct frame_info *dummy = analyze_dummy_frame (pc, 0);
|
||||
/* Set up a dummy frame_info, Analyze the prolog and fill in the
|
||||
extra info. */
|
||||
/* Results will tell us which type of frame it uses. */
|
||||
if (dummy->extra_info->status & MY_FRAME_IN_SP)
|
||||
{
|
||||
*reg = SP_REGNUM;
|
||||
*offset = -(dummy->extra_info->stack_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
*reg = A3_REGNUM;
|
||||
*offset = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* This can be made more generic later. */
|
||||
static void
|
||||
set_machine_hook (filename)
|
||||
char *filename;
|
||||
{
|
||||
int i;
|
||||
|
||||
if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
|
||||
|| bfd_get_mach (exec_bfd) == 0)
|
||||
{
|
||||
mn10300_register_names = mn10300_generic_register_names;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
_initialize_mn10300_tdep ()
|
||||
{
|
||||
/* printf("_initialize_mn10300_tdep\n"); */
|
||||
|
||||
tm_print_insn = print_insn_mn10300;
|
||||
|
||||
specify_exec_file_hook (set_machine_hook);
|
||||
}
|
||||
|
Reference in New Issue
Block a user