Finished layout code.

This commit is contained in:
Ian Lance Taylor
2006-09-27 22:53:42 +00:00
parent 6b89cc2108
commit 75f65a3e30
12 changed files with 1281 additions and 407 deletions

View File

@ -52,15 +52,14 @@ Layout_task::run(Workqueue*)
p != this->input_objects_->end();
++p)
(*p)->layout(&layout);
layout.finalize(this->input_objects_);
layout.finalize(this->input_objects_, this->symtab_);
}
// Layout methods.
Layout::Layout(const General_options& options)
: options_(options), namepool_(), signatures_(),
section_name_map_(), segment_list_(), section_list_(),
data_list_()
: options_(options), namepool_(), sympool_(), signatures_(),
section_name_map_(), segment_list_(), section_list_()
{
}
@ -169,6 +168,233 @@ Layout::layout(Object* object, const char* name,
return os;
}
// Map section flags to segment flags.
elfcpp::Elf_Word
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
{
elfcpp::Elf_Word ret = elfcpp::PF_R;
if ((flags & elfcpp::SHF_WRITE) != 0)
ret |= elfcpp::PF_W;
if ((flags & elfcpp::SHF_EXECINSTR) != 0)
ret |= elfcpp::PF_X;
return ret;
}
// Make a new Output_section, and attach it to segments as
// appropriate.
Output_section*
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{
Output_section* os = new Output_section(name, type, flags);
if ((flags & elfcpp::SHF_ALLOC) == 0)
this->section_list_.push_back(os);
else
{
// This output section goes into a PT_LOAD segment.
elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
// The only thing we really care about for PT_LOAD segments is
// whether or not they are writable, so that is how we search
// for them. People who need segments sorted on some other
// basis will have to wait until we implement a mechanism for
// them to describe the segments they want.
Segment_list::const_iterator p;
for (p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_LOAD
&& ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
{
(*p)->add_output_section(os, seg_flags);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os, seg_flags);
}
// If we see a loadable SHT_NOTE section, we create a PT_NOTE
// segment.
if (type == elfcpp::SHT_NOTE)
{
// See if we already have an equivalent PT_NOTE segment.
for (p = this->segment_list_.begin();
p != segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_NOTE
&& (((*p)->flags() & elfcpp::PF_W)
== (seg_flags & elfcpp::PF_W)))
{
(*p)->add_output_section(os, seg_flags);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os, seg_flags);
}
}
// If we see a loadable SHF_TLS section, we create a PT_TLS
// segment.
if ((flags & elfcpp::SHF_TLS) != 0)
{
// See if we already have an equivalent PT_TLS segment.
for (p = this->segment_list_.begin();
p != segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_TLS
&& (((*p)->flags() & elfcpp::PF_W)
== (seg_flags & elfcpp::PF_W)))
{
(*p)->add_output_section(os, seg_flags);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os, seg_flags);
}
}
}
return os;
}
// Find the first read-only PT_LOAD segment, creating one if
// necessary.
Output_segment*
Layout::find_first_load_seg()
{
for (Segment_list::const_iterator p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_LOAD
&& ((*p)->flags() & elfcpp::PF_R) != 0
&& ((*p)->flags() & elfcpp::PF_W) == 0)
return *p;
}
Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
this->segment_list_.push_back(load_seg);
return load_seg;
}
// Finalize the layout. When this is called, we have created all the
// output sections and all the output segments which are based on
// input sections. We have several things to do, and we have to do
// them in the right order, so that we get the right results correctly
// and efficiently.
// 1) Finalize the list of output segments and create the segment
// table header.
// 2) Finalize the dynamic symbol table and associated sections.
// 3) Determine the final file offset of all the output segments.
// 4) Determine the final file offset of all the SHF_ALLOC output
// sections.
// 5) Create the symbol table sections and the section name table
// section.
// 6) Finalize the symbol table: set symbol values to their final
// value and make a final determination of which symbols are going
// into the output symbol table.
// 7) Create the section table header.
// 8) Determine the final file offset of all the output sections which
// are not SHF_ALLOC, including the section table header.
// 9) Finalize the ELF file header.
// This function returns the size of the output file.
off_t
Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
{
if (input_objects->any_dynamic())
{
// If there are any dynamic objects in the link, then we need
// some additional segments: PT_PHDRS, PT_INTERP, and
// PT_DYNAMIC. We also need to finalize the dynamic symbol
// table and create the dynamic hash table.
abort();
}
// FIXME: Handle PT_GNU_STACK.
Output_segment* load_seg = this->find_first_load_seg();
// Lay out the segment headers.
int size = input_objects->target()->get_size();
Output_segment_headers* segment_headers;
segment_headers = new Output_segment_headers(size, this->segment_list_);
load_seg->add_initial_output_data(segment_headers);
// FIXME: Attach them to PT_PHDRS if necessary.
// Lay out the file header.
Output_file_header* file_header;
file_header = new Output_file_header(size,
this->options_,
input_objects->target(),
symtab,
segment_headers);
load_seg->add_initial_output_data(file_header);
// Set the file offsets of all the segments.
off_t off = this->set_segment_offsets(input_objects->target(), load_seg);
// Create the symbol table sections.
// FIXME: We don't need to do this if we are stripping symbols.
Output_section* osymtab;
Output_section* ostrtab;
this->create_symtab_sections(input_objects, symtab, &osymtab, &ostrtab);
// Create the .shstrtab section.
Output_section* shstrtab_section = this->create_shstrtab();
// Set the file offsets of all the sections not associated with
// segments.
off = this->set_section_offsets(off);
// Create the section table header.
Output_section_headers* oshdrs = this->create_shdrs(size, off);
off += oshdrs->data_size();
file_header->set_section_info(oshdrs, shstrtab_section);
// Now we know exactly where everything goes in the output file.
return off;
}
// Return whether SEG1 should be before SEG2 in the output file. This
// is based entirely on the segment type and flags. When this is
// called the segment addresses has normally not yet been set.
@ -245,177 +471,177 @@ Layout::segment_precedes(const Output_segment* seg1,
return paddr1 < paddr2;
}
// Map section flags to segment flags.
// Set the file offsets of all the segments. They have all been
// created. LOAD_SEG must be be laid out first. Return the offset of
// the data to follow.
elfcpp::Elf_Word
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
off_t
Layout::set_segment_offsets(const Target* target, Output_segment* load_seg)
{
elfcpp::Elf_Word ret = elfcpp::PF_R;
if ((flags & elfcpp::SHF_WRITE) != 0)
ret |= elfcpp::PF_W;
if ((flags & elfcpp::SHF_EXECINSTR) != 0)
ret |= elfcpp::PF_X;
return ret;
}
// Sort them into the final order.
std::sort(this->segment_list_.begin(), this->segment_list_.end(),
Layout::Compare_segments());
// Make a new Output_section, and attach it to segments as
// appropriate.
Output_section*
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{
Output_section* os = new Output_section(name, type, flags);
if ((flags & elfcpp::SHF_ALLOC) == 0)
this->section_list_.push_back(os);
else
// Find the PT_LOAD segments, and set their addresses and offsets
// and their section's addresses and offsets.
uint64_t addr = target->text_segment_address();
off_t off = 0;
bool was_readonly = false;
for (Segment_list::iterator p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
{
// This output section goes into a PT_LOAD segment.
elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
// The only thing we really care about for PT_LOAD segments is
// whether or not they are writable, so that is how we search
// for them. People who need segments sorted on some other
// basis will have to wait until we implement a mechanism for
// them to describe the segments they want.
Segment_list::const_iterator p;
for (p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
if ((*p)->type() == elfcpp::PT_LOAD)
{
if ((*p)->type() == elfcpp::PT_LOAD
&& ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
if (load_seg != NULL && load_seg != *p)
abort();
load_seg = NULL;
// If the last segment was readonly, and this one is not,
// then skip the address forward one page, maintaining the
// same position within the page. This lets us store both
// segments overlapping on a single page in the file, but
// the loader will put them on different pages in memory.
uint64_t orig_addr = addr;
uint64_t orig_off = off;
uint64_t aligned_addr = addr;
uint64_t abi_pagesize = target->abi_pagesize();
if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
{
(*p)->add_output_section(os);
break;
uint64_t align = (*p)->max_data_align();
addr = (addr + align - 1) & ~ (align - 1);
aligned_addr = addr;
if ((addr & (abi_pagesize - 1)) != 0)
addr = addr + abi_pagesize;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os);
}
off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
uint64_t new_addr = (*p)->set_section_addresses(addr, &off);
// If we see a loadable SHT_NOTE section, we create a PT_NOTE
// segment.
if (type == elfcpp::SHT_NOTE)
{
// See if we already have an equivalent PT_NOTE segment.
for (p = this->segment_list_.begin();
p != segment_list_.end();
++p)
// Now that we know the size of this segment, we may be able
// to save a page in memory, at the cost of wasting some
// file space, by instead aligning to the start of a new
// page. Here we use the real machine page size rather than
// the ABI mandated page size.
if (aligned_addr != addr)
{
if ((*p)->type() == elfcpp::PT_NOTE
&& (((*p)->flags() & elfcpp::PF_W)
== (seg_flags & elfcpp::PF_W)))
uint64_t common_pagesize = target->common_pagesize();
uint64_t first_off = (common_pagesize
- (aligned_addr
& (common_pagesize - 1)));
uint64_t last_off = new_addr & (common_pagesize - 1);
if (first_off > 0
&& last_off > 0
&& ((aligned_addr & ~ (common_pagesize - 1))
!= (new_addr & ~ (common_pagesize - 1)))
&& first_off + last_off <= common_pagesize)
{
(*p)->add_output_section(os);
break;
addr = ((aligned_addr + common_pagesize - 1)
& ~ (common_pagesize - 1));
off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
new_addr = (*p)->set_section_addresses(addr, &off);
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os);
}
}
addr = new_addr;
// If we see a loadable SHF_TLS section, we create a PT_TLS
// segment.
if ((flags & elfcpp::SHF_TLS) != 0)
{
// See if we already have an equivalent PT_TLS segment.
for (p = this->segment_list_.begin();
p != segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_TLS
&& (((*p)->flags() & elfcpp::PF_W)
== (seg_flags & elfcpp::PF_W)))
{
(*p)->add_output_section(os);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os);
}
if (((*p)->flags() & elfcpp::PF_W) == 0)
was_readonly = true;
}
}
// Handle the non-PT_LOAD segments, setting their offsets from their
// section's offsets.
for (Segment_list::iterator p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
{
if ((*p)->type() != elfcpp::PT_LOAD)
(*p)->set_offset();
}
return off;
}
// Set the file offset of all the sections not associated with a
// segment.
off_t
Layout::set_section_offsets(off_t off)
{
for (Layout::Section_list::iterator p = this->section_list_.begin();
p != this->section_list_.end();
++p)
{
uint64_t addralign = (*p)->addralign();
off = (off + addralign - 1) & ~ (addralign - 1);
(*p)->set_address(0, off);
off += (*p)->data_size();
}
return off;
}
// Create the symbol table sections.
void
Layout::create_symtab_sections(const Input_objects* input_objects,
Symbol_table* symtab,
Output_section** posymtab,
Output_section** postrtab)
{
off_t off = 0;
for (Input_objects::Object_list::const_iterator p = input_objects->begin();
p != input_objects->end();
++p)
{
Task_lock_obj<Object> tlo(**p);
off = (*p)->finalize_local_symbols(off, &this->sympool_);
}
off = symtab->finalize(off, &this->sympool_);
*posymtab = new Output_section_symtab(this->namepool_.add(".symtab"), off);
*postrtab = new Output_section_strtab(this->namepool_.add(".strtab"),
&this->sympool_);
}
// Create the .shstrtab section, which holds the names of the
// sections. At the time this is called, we have created all the
// output sections except .shstrtab itself.
Output_section*
Layout::create_shstrtab()
{
// FIXME: We don't need to create a .shstrtab section if we are
// stripping everything.
const char* name = this->namepool_.add(".shstrtab");
Output_section* os = new Output_section_strtab(name,
&this->namepool_);
this->section_list_.push_back(os);
return os;
}
// Create the sections for the symbol table.
// Create the section headers. SIZE is 32 or 64. OFF is the file
// offset.
void
Layout::create_symtab_sections()
Output_section_headers*
Layout::create_shdrs(int size, off_t off)
{
}
// Finalize the layout. When this is called, we have created all the
// output sections and all the output segments which are based on
// input sections. We have several things to do, and we have to do
// them in the right order, so that we get the right results correctly
// and efficiently.
// 1) Finalize the list of output segments and create the segment
// table header.
// 2) Finalize the dynamic symbol table and associated sections.
// 3) Determine the final file offset of all the output segments.
// 4) Determine the final file offset of all the SHF_ALLOC output
// sections.
// 5) Finalize the symbol table: set symbol values to their final
// value and make a final determination of which symbols are going
// into the output symbol table.
// 6) Create the symbol table sections and the section name table
// section.
// 7) Create the section table header.
// 8) Determine the final file offset of all the output sections which
// are not SHF_ALLOC, including the section table header.
// 9) Finalize the ELF file header.
void
Layout::finalize(const Input_objects* input_objects)
{
if (input_objects->any_dynamic())
{
// If there are any dynamic objects in the link, then we need
// some additional segments: PT_PHDRS, PT_INTERP, and
// PT_DYNAMIC. We also need to finalize the dynamic symbol
// table and create the dynamic hash table.
abort();
}
// FIXME: Handle PT_GNU_STACK.
std::sort(this->segment_list_.begin(), this->segment_list_.end(),
Layout::Compare_segments());
Output_segment_headers* segment_headers;
segment_headers = new Output_segment_headers(this->segment_list_);
Output_section_headers* oshdrs;
oshdrs = new Output_section_headers(size, this->segment_list_,
this->section_list_);
uint64_t addralign = oshdrs->addralign();
off = (off + addralign - 1) & ~ (addralign - 1);
oshdrs->set_address(0, off);
return oshdrs;
}
// The mapping of .gnu.linkonce section names to real section names.