Implement real literal extension for Ada

Sometimes it is convenient to be able to specify the exact bits of a
floating-point literal.  For example, you may want to set a
floating-point register to a denormalized value, or to a particular
NaN.

In C, you can do this by combining the "{}" cast with an array
literal, like:

    (gdb) p {double}{0x576488BDD2AE9FFE}
    $1 = 9.8765449999999996e+112

This patch adds a somewhat similar idea to Ada.  It extends the lexer
to allow "l" and "f" suffixes in a based literal.  The "f" indicates a
floating-point literal, and the "l"s control the size of the
floating-point type.

Note that this differs from Ada's based real literals.  I believe
those can also be used to control the bits of a floating-point value,
but they are a bit more cumbersome to use (simplest is binary but
that's also very lengthy).  Also, these aren't implemented in GDB.

I chose not to allow this extension to work with based integer
literals with exponents.  That didn't seem very useful.
This commit is contained in:
Tom Tromey
2022-02-16 10:07:18 -07:00
parent c9bfa277e9
commit 63fc2437de
5 changed files with 174 additions and 20 deletions

View File

@ -122,7 +122,11 @@ static int paren_depth;
e_ptr + 1);
}
{NUM10}"#"{HEXDIG}({HEXDIG}|_)*"#" {
/* The "llf" is a gdb extension to allow a floating-point
constant to be written in some other base. The
floating-point number is formed by reinterpreting the
bytes, allowing direct control over the bits. */
{NUM10}(l{0,2}f)?"#"{HEXDIG}({HEXDIG}|_)*"#" {
canonicalizeNumeral (numbuf, yytext);
return processInt (pstate, numbuf, strchr (numbuf, '#') + 1,
NULL);
@ -347,18 +351,36 @@ static int
processInt (struct parser_state *par_state, const char *base0,
const char *num0, const char *exp0)
{
ULONGEST result;
long exp;
int base;
const char *trailer;
/* For the based literal with an "f" prefix, we'll return a
floating-point number. This counts the the number of "l"s seen,
to decide the width of the floating-point number to return. -1
means no "f". */
int floating_point_l_count = -1;
if (base0 == NULL)
base = 10;
else
{
base = strtol (base0, (char **) NULL, 10);
char *end_of_base;
base = strtol (base0, &end_of_base, 10);
if (base < 2 || base > 16)
error (_("Invalid base: %d."), base);
while (*end_of_base == 'l')
{
++floating_point_l_count;
++end_of_base;
}
/* This assertion is ensured by the pattern. */
gdb_assert (floating_point_l_count == -1 || *end_of_base == 'f');
if (*end_of_base == 'f')
{
++end_of_base;
++floating_point_l_count;
}
/* This assertion is ensured by the pattern. */
gdb_assert (*end_of_base == '#');
}
if (exp0 == NULL)
@ -366,26 +388,62 @@ processInt (struct parser_state *par_state, const char *base0,
else
exp = strtol(exp0, (char **) NULL, 10);
errno = 0;
result = strtoulst (num0, &trailer, base);
if (errno == ERANGE)
error (_("Integer literal out of range"));
if (isxdigit(*trailer))
error (_("Invalid digit `%c' in based literal"), *trailer);
gdb_mpz result;
while (isxdigit (*num0))
{
int dig = fromhex (*num0);
if (dig >= base)
error (_("Invalid digit `%c' in based literal"), *num0);
mpz_mul_ui (result.val, result.val, base);
mpz_add_ui (result.val, result.val, dig);
++num0;
}
while (exp > 0)
{
if (result > (ULONG_MAX / base))
error (_("Integer literal out of range"));
result *= base;
mpz_mul_ui (result.val, result.val, base);
exp -= 1;
}
if ((result >> (gdbarch_int_bit (par_state->gdbarch ())-1)) == 0)
if (floating_point_l_count > -1)
{
struct type *fp_type;
if (floating_point_l_count == 0)
fp_type = language_lookup_primitive_type (par_state->language (),
par_state->gdbarch (),
"float");
else if (floating_point_l_count == 1)
fp_type = language_lookup_primitive_type (par_state->language (),
par_state->gdbarch (),
"long_float");
else
{
/* This assertion is ensured by the pattern. */
gdb_assert (floating_point_l_count == 2);
fp_type = language_lookup_primitive_type (par_state->language (),
par_state->gdbarch (),
"long_long_float");
}
yylval.typed_val_float.type = fp_type;
result.write (gdb::make_array_view (yylval.typed_val_float.val,
TYPE_LENGTH (fp_type)),
type_byte_order (fp_type),
true);
return FLOAT;
}
gdb_mpz maxval (ULONGEST_MAX / base);
if (mpz_cmp (result.val, maxval.val) > 0)
error (_("Integer literal out of range"));
LONGEST value = result.as_integer<LONGEST> ();
if ((value >> (gdbarch_int_bit (par_state->gdbarch ())-1)) == 0)
yylval.typed_val.type = type_int (par_state);
else if ((result >> (gdbarch_long_bit (par_state->gdbarch ())-1)) == 0)
else if ((value >> (gdbarch_long_bit (par_state->gdbarch ())-1)) == 0)
yylval.typed_val.type = type_long (par_state);
else if (((result >> (gdbarch_long_bit (par_state->gdbarch ())-1)) >> 1) == 0)
else if (((value >> (gdbarch_long_bit (par_state->gdbarch ())-1)) >> 1) == 0)
{
/* We have a number representable as an unsigned integer quantity.
For consistency with the C treatment, we will treat it as an
@ -396,18 +454,18 @@ processInt (struct parser_state *par_state, const char *base0,
*/
yylval.typed_val.type
= builtin_type (par_state->gdbarch ())->builtin_unsigned_long;
if (result & LONGEST_SIGN)
if (value & LONGEST_SIGN)
yylval.typed_val.val =
(LONGEST) (result & ~LONGEST_SIGN)
(LONGEST) (value & ~LONGEST_SIGN)
- (LONGEST_SIGN>>1) - (LONGEST_SIGN>>1);
else
yylval.typed_val.val = (LONGEST) result;
yylval.typed_val.val = (LONGEST) value;
return INT;
}
else
yylval.typed_val.type = type_long_long (par_state);
yylval.typed_val.val = (LONGEST) result;
yylval.typed_val.val = value;
return INT;
}