x86: properly initialize struct instr_info instance(s)

Commit 39fb369834a3 ("opcodes: Make i386-dis.c thread-safe") introduced
a lot of uninitialized data. Alan has in particular observed ubsan
taking issue with the loop inverting the order of operands, where
op_riprel[] - an array of bool - can hold values other than 0 or 1.

Move instantiation of struct instr_info into print_insn() (thus having
just a single central point), and make use of C99 dedicated initializers
to fill fields right in the initializer where possible. This way all
fields not explicitly initialized will be zero-filled, which in turn
allows dropping of some other explicit initialization later in the
function or in ckprefix(). Additionally this removes a lot of
indirection, as all "ins->info" uses can simply become "info".

Make one further arrangement though, to limit the amount of data needing
(zero)initializing on every invocation: Convert the op_out structure
member to just an array of pointers, with the actual arrays living
inside print_insn() (and, as befoe, having just their 1st char filled
with nul).

While there, instead of adjusting print_insn()'s forward declaration,
arrange for no such declaration to be needed in the first place.
This commit is contained in:
Jan Beulich
2022-06-13 09:51:38 +02:00
parent 536595b712
commit 384e201e5a

View File

@ -42,7 +42,6 @@
#include <setjmp.h>
typedef struct instr_info instr_info;
static int print_insn (bfd_vma, instr_info *);
static void dofloat (instr_info *, int);
static void OP_ST (instr_info *, int, int);
static void OP_STi (instr_info *, int, int);
@ -234,7 +233,7 @@ struct instr_info
unsigned char op_ad;
signed char op_index[MAX_OPERANDS];
bool op_riprel[MAX_OPERANDS];
char op_out[MAX_OPERANDS][100];
char *op_out[MAX_OPERANDS];
bfd_vma op_address[MAX_OPERANDS];
bfd_vma start_pc;
@ -8545,22 +8544,7 @@ static int
ckprefix (instr_info *ins)
{
int newrex, i, length;
ins->rex = 0;
ins->prefixes = 0;
ins->used_prefixes = 0;
ins->rex_used = 0;
ins->evex_used = 0;
ins->last_lock_prefix = -1;
ins->last_repz_prefix = -1;
ins->last_repnz_prefix = -1;
ins->last_data_prefix = -1;
ins->last_addr_prefix = -1;
ins->last_rex_prefix = -1;
ins->last_seg_prefix = -1;
ins->fwait_prefix = -1;
ins->active_seg_prefix = 0;
for (i = 0; i < (int) ARRAY_SIZE (ins->all_prefixes); i++)
ins->all_prefixes[i] = 0;
i = 0;
length = 0;
/* The maximum instruction length is 15bytes. */
@ -8769,39 +8753,6 @@ prefix_name (instr_info *ins, int pref, int sizeflag)
}
}
/* Here for backwards compatibility. When gdb stops using
print_insn_i386_att and print_insn_i386_intel these functions can
disappear, and print_insn_i386 be merged into print_insn. */
int
print_insn_i386_att (bfd_vma pc, disassemble_info *info)
{
instr_info ins;
ins.info = info;
ins.intel_syntax = 0;
return print_insn (pc, &ins);
}
int
print_insn_i386_intel (bfd_vma pc, disassemble_info *info)
{
instr_info ins;
ins.info = info;
ins.intel_syntax = 1;
return print_insn (pc, &ins);
}
int
print_insn_i386 (bfd_vma pc, disassemble_info *info)
{
instr_info ins;
ins.info = info;
ins.intel_syntax = -1;
return print_insn (pc, &ins);
}
void
print_i386_disassembler_options (FILE *stream)
{
@ -9421,7 +9372,7 @@ i386_dis_printf (instr_info *ins, enum disassembler_style style,
}
static int
print_insn (bfd_vma pc, instr_info *ins)
print_insn (bfd_vma pc, disassemble_info *info, int intel_syntax)
{
const struct dis386 *dp;
int i;
@ -9433,60 +9384,75 @@ print_insn (bfd_vma pc, instr_info *ins)
struct dis_private priv;
int prefix_length;
int op_count;
instr_info ins = {
.info = info,
.intel_syntax = intel_syntax >= 0
? intel_syntax
: (info->mach & bfd_mach_i386_intel_syntax) != 0,
.intel_mnemonic = !SYSV386_COMPAT,
.op_index[0 ... MAX_OPERANDS - 1] = -1,
.start_pc = pc,
.start_codep = priv.the_buffer,
.codep = priv.the_buffer,
.obufp = ins.obuf,
.last_lock_prefix = -1,
.last_repz_prefix = -1,
.last_repnz_prefix = -1,
.last_data_prefix = -1,
.last_addr_prefix = -1,
.last_rex_prefix = -1,
.last_seg_prefix = -1,
.fwait_prefix = -1,
};
char op_out[MAX_OPERANDS][100];
ins->isa64 = 0;
ins->intel_mnemonic = !SYSV386_COMPAT;
ins->op_is_jump = false;
priv.orig_sizeflag = AFLAG | DFLAG;
if ((ins->info->mach & bfd_mach_i386_i386) != 0)
ins->address_mode = mode_32bit;
else if (ins->info->mach == bfd_mach_i386_i8086)
if ((info->mach & bfd_mach_i386_i386) != 0)
ins.address_mode = mode_32bit;
else if (info->mach == bfd_mach_i386_i8086)
{
ins->address_mode = mode_16bit;
ins.address_mode = mode_16bit;
priv.orig_sizeflag = 0;
}
else
ins->address_mode = mode_64bit;
ins.address_mode = mode_64bit;
if (ins->intel_syntax == (char) -1)
ins->intel_syntax = (ins->info->mach & bfd_mach_i386_intel_syntax) != 0;
for (p = ins->info->disassembler_options; p != NULL;)
for (p = info->disassembler_options; p != NULL;)
{
if (startswith (p, "amd64"))
ins->isa64 = amd64;
ins.isa64 = amd64;
else if (startswith (p, "intel64"))
ins->isa64 = intel64;
ins.isa64 = intel64;
else if (startswith (p, "x86-64"))
{
ins->address_mode = mode_64bit;
ins.address_mode = mode_64bit;
priv.orig_sizeflag |= AFLAG | DFLAG;
}
else if (startswith (p, "i386"))
{
ins->address_mode = mode_32bit;
ins.address_mode = mode_32bit;
priv.orig_sizeflag |= AFLAG | DFLAG;
}
else if (startswith (p, "i8086"))
{
ins->address_mode = mode_16bit;
ins.address_mode = mode_16bit;
priv.orig_sizeflag &= ~(AFLAG | DFLAG);
}
else if (startswith (p, "intel"))
{
ins->intel_syntax = 1;
ins.intel_syntax = 1;
if (startswith (p + 5, "-mnemonic"))
ins->intel_mnemonic = true;
ins.intel_mnemonic = true;
}
else if (startswith (p, "att"))
{
ins->intel_syntax = 0;
ins.intel_syntax = 0;
if (startswith (p + 3, "-mnemonic"))
ins->intel_mnemonic = false;
ins.intel_mnemonic = false;
}
else if (startswith (p, "addr"))
{
if (ins->address_mode == mode_64bit)
if (ins.address_mode == mode_64bit)
{
if (p[4] == '3' && p[5] == '2')
priv.orig_sizeflag &= ~AFLAG;
@ -9516,46 +9482,41 @@ print_insn (bfd_vma pc, instr_info *ins)
p++;
}
if (ins->address_mode == mode_64bit && sizeof (bfd_vma) < 8)
if (ins.address_mode == mode_64bit && sizeof (bfd_vma) < 8)
{
i386_dis_printf (ins, dis_style_text, _("64-bit address is disabled"));
i386_dis_printf (&ins, dis_style_text, _("64-bit address is disabled"));
return -1;
}
if (ins->intel_syntax)
if (ins.intel_syntax)
{
ins->open_char = '[';
ins->close_char = ']';
ins->separator_char = '+';
ins->scale_char = '*';
ins.open_char = '[';
ins.close_char = ']';
ins.separator_char = '+';
ins.scale_char = '*';
}
else
{
ins->open_char = '(';
ins->close_char = ')';
ins->separator_char = ',';
ins->scale_char = ',';
ins.open_char = '(';
ins.close_char = ')';
ins.separator_char = ',';
ins.scale_char = ',';
}
/* The output looks better if we put 7 bytes on a line, since that
puts most long word instructions on a single line. */
ins->info->bytes_per_line = 7;
info->bytes_per_line = 7;
ins->info->private_data = &priv;
info->private_data = &priv;
priv.max_fetched = priv.the_buffer;
priv.insn_start = pc;
ins->obuf[0] = 0;
for (i = 0; i < MAX_OPERANDS; ++i)
{
ins->op_out[i][0] = 0;
ins->op_index[i] = -1;
op_out[i][0] = 0;
ins.op_out[i] = op_out[i];
}
ins->start_pc = pc;
ins->start_codep = priv.the_buffer;
ins->codep = priv.the_buffer;
if (OPCODES_SIGSETJMP (priv.bailout) != 0)
{
const char *name;
@ -9563,17 +9524,17 @@ print_insn (bfd_vma pc, instr_info *ins)
/* Getting here means we tried for data but didn't get it. That
means we have an incomplete instruction of some sort. Just
print the first byte as a prefix or a .byte pseudo-op. */
if (ins->codep > priv.the_buffer)
if (ins.codep > priv.the_buffer)
{
name = prefix_name (ins, priv.the_buffer[0], priv.orig_sizeflag);
name = prefix_name (&ins, priv.the_buffer[0], priv.orig_sizeflag);
if (name != NULL)
i386_dis_printf (ins, dis_style_mnemonic, "%s", name);
i386_dis_printf (&ins, dis_style_mnemonic, "%s", name);
else
{
/* Just print the first byte as a .byte instruction. */
i386_dis_printf (ins, dis_style_assembler_directive,
i386_dis_printf (&ins, dis_style_assembler_directive,
".byte ");
i386_dis_printf (ins, dis_style_immediate, "0x%x",
i386_dis_printf (&ins, dis_style_immediate, "0x%x",
(unsigned int) priv.the_buffer[0]);
}
@ -9583,134 +9544,129 @@ print_insn (bfd_vma pc, instr_info *ins)
return -1;
}
ins->obufp = ins->obuf;
sizeflag = priv.orig_sizeflag;
if (!ckprefix (ins) || ins->rex_used)
if (!ckprefix (&ins) || ins.rex_used)
{
/* Too many ins->prefixes or unused REX ins->prefixes. */
/* Too many prefixes or unused REX prefixes. */
for (i = 0;
i < (int) ARRAY_SIZE (ins->all_prefixes) && ins->all_prefixes[i];
i < (int) ARRAY_SIZE (ins.all_prefixes) && ins.all_prefixes[i];
i++)
i386_dis_printf (ins, dis_style_mnemonic, "%s%s",
i386_dis_printf (&ins, dis_style_mnemonic, "%s%s",
(i == 0 ? "" : " "),
prefix_name (ins, ins->all_prefixes[i], sizeflag));
prefix_name (&ins, ins.all_prefixes[i], sizeflag));
return i;
}
ins->insn_codep = ins->codep;
ins.insn_codep = ins.codep;
FETCH_DATA (ins->info, ins->codep + 1);
ins->two_source_ops = (*ins->codep == 0x62) || (*ins->codep == 0xc8);
FETCH_DATA (info, ins.codep + 1);
ins.two_source_ops = (*ins.codep == 0x62) || (*ins.codep == 0xc8);
if (((ins->prefixes & PREFIX_FWAIT)
&& ((*ins->codep < 0xd8) || (*ins->codep > 0xdf))))
if (((ins.prefixes & PREFIX_FWAIT)
&& ((*ins.codep < 0xd8) || (*ins.codep > 0xdf))))
{
/* Handle ins->prefixes before fwait. */
for (i = 0; i < ins->fwait_prefix && ins->all_prefixes[i];
/* Handle ins.prefixes before fwait. */
for (i = 0; i < ins.fwait_prefix && ins.all_prefixes[i];
i++)
i386_dis_printf (ins, dis_style_mnemonic, "%s ",
prefix_name (ins, ins->all_prefixes[i], sizeflag));
i386_dis_printf (ins, dis_style_mnemonic, "fwait");
i386_dis_printf (&ins, dis_style_mnemonic, "%s ",
prefix_name (&ins, ins.all_prefixes[i], sizeflag));
i386_dis_printf (&ins, dis_style_mnemonic, "fwait");
return i + 1;
}
if (*ins->codep == 0x0f)
if (*ins.codep == 0x0f)
{
unsigned char threebyte;
ins->codep++;
FETCH_DATA (ins->info, ins->codep + 1);
threebyte = *ins->codep;
ins.codep++;
FETCH_DATA (info, ins.codep + 1);
threebyte = *ins.codep;
dp = &dis386_twobyte[threebyte];
ins->need_modrm = twobyte_has_modrm[threebyte];
ins->codep++;
ins.need_modrm = twobyte_has_modrm[threebyte];
ins.codep++;
}
else
{
dp = &dis386[*ins->codep];
ins->need_modrm = onebyte_has_modrm[*ins->codep];
ins->codep++;
dp = &dis386[*ins.codep];
ins.need_modrm = onebyte_has_modrm[*ins.codep];
ins.codep++;
}
/* Save sizeflag for printing the extra ins->prefixes later before updating
/* Save sizeflag for printing the extra ins.prefixes later before updating
it for mnemonic and operand processing. The prefix names depend
only on the address mode. */
orig_sizeflag = sizeflag;
if (ins->prefixes & PREFIX_ADDR)
if (ins.prefixes & PREFIX_ADDR)
sizeflag ^= AFLAG;
if ((ins->prefixes & PREFIX_DATA))
if ((ins.prefixes & PREFIX_DATA))
sizeflag ^= DFLAG;
ins->end_codep = ins->codep;
if (ins->need_modrm)
ins.end_codep = ins.codep;
if (ins.need_modrm)
{
FETCH_DATA (ins->info, ins->codep + 1);
ins->modrm.mod = (*ins->codep >> 6) & 3;
ins->modrm.reg = (*ins->codep >> 3) & 7;
ins->modrm.rm = *ins->codep & 7;
FETCH_DATA (info, ins.codep + 1);
ins.modrm.mod = (*ins.codep >> 6) & 3;
ins.modrm.reg = (*ins.codep >> 3) & 7;
ins.modrm.rm = *ins.codep & 7;
}
else
memset (&ins->modrm, 0, sizeof (ins->modrm));
ins->need_vex = false;
memset (&ins->vex, 0, sizeof (ins->vex));
if (dp->name == NULL && dp->op[0].bytemode == FLOATCODE)
{
get_sib (ins, sizeflag);
dofloat (ins, sizeflag);
get_sib (&ins, sizeflag);
dofloat (&ins, sizeflag);
}
else
{
dp = get_valid_dis386 (dp, ins);
if (dp != NULL && putop (ins, dp->name, sizeflag) == 0)
dp = get_valid_dis386 (dp, &ins);
if (dp != NULL && putop (&ins, dp->name, sizeflag) == 0)
{
get_sib (ins, sizeflag);
get_sib (&ins, sizeflag);
for (i = 0; i < MAX_OPERANDS; ++i)
{
ins->obufp = ins->op_out[i];
ins->op_ad = MAX_OPERANDS - 1 - i;
ins.obufp = ins.op_out[i];
ins.op_ad = MAX_OPERANDS - 1 - i;
if (dp->op[i].rtn)
(*dp->op[i].rtn) (ins, dp->op[i].bytemode, sizeflag);
(*dp->op[i].rtn) (&ins, dp->op[i].bytemode, sizeflag);
/* For EVEX instruction after the last operand masking
should be printed. */
if (i == 0 && ins->vex.evex)
if (i == 0 && ins.vex.evex)
{
/* Don't print {%k0}. */
if (ins->vex.mask_register_specifier)
if (ins.vex.mask_register_specifier)
{
const char *reg_name
= att_names_mask[ins->vex.mask_register_specifier];
oappend (ins, "{");
oappend_register (ins, reg_name);
oappend (ins, "}");
= att_names_mask[ins.vex.mask_register_specifier];
oappend (&ins, "{");
oappend_register (&ins, reg_name);
oappend (&ins, "}");
}
if (ins->vex.zeroing)
oappend (ins, "{z}");
if (ins.vex.zeroing)
oappend (&ins, "{z}");
/* S/G insns require a mask and don't allow
zeroing-masking. */
if ((dp->op[0].bytemode == vex_vsib_d_w_dq_mode
|| dp->op[0].bytemode == vex_vsib_q_w_dq_mode)
&& (ins->vex.mask_register_specifier == 0
|| ins->vex.zeroing))
oappend (ins, "/(bad)");
&& (ins.vex.mask_register_specifier == 0
|| ins.vex.zeroing))
oappend (&ins, "/(bad)");
}
}
/* Check whether rounding control was enabled for an insn not
supporting it. */
if (ins->modrm.mod == 3 && ins->vex.b
&& !(ins->evex_used & EVEX_b_used))
if (ins.modrm.mod == 3 && ins.vex.b
&& !(ins.evex_used & EVEX_b_used))
{
for (i = 0; i < MAX_OPERANDS; ++i)
{
ins->obufp = ins->op_out[i];
if (*ins->obufp)
ins.obufp = ins.op_out[i];
if (*ins.obufp)
continue;
oappend (ins, names_rounding[ins->vex.ll]);
oappend (ins, "bad}");
oappend (&ins, names_rounding[ins.vex.ll]);
oappend (&ins, "bad}");
break;
}
}
@ -9718,15 +9674,15 @@ print_insn (bfd_vma pc, instr_info *ins)
}
/* Clear instruction information. */
ins->info->insn_info_valid = 0;
ins->info->branch_delay_insns = 0;
ins->info->data_size = 0;
ins->info->insn_type = dis_noninsn;
ins->info->target = 0;
ins->info->target2 = 0;
info->insn_info_valid = 0;
info->branch_delay_insns = 0;
info->data_size = 0;
info->insn_type = dis_noninsn;
info->target = 0;
info->target2 = 0;
/* Reset jump operation indicator. */
ins->op_is_jump = false;
ins.op_is_jump = false;
{
int jump_detection = 0;
@ -9747,28 +9703,28 @@ print_insn (bfd_vma pc, instr_info *ins)
/* Determine if this is a jump or branch. */
if ((jump_detection & 0x3) == 0x3)
{
ins->op_is_jump = true;
ins.op_is_jump = true;
if (jump_detection & 0x4)
ins->info->insn_type = dis_condbranch;
info->insn_type = dis_condbranch;
else
ins->info->insn_type = (dp->name && !strncmp (dp->name, "call", 4))
info->insn_type = (dp->name && !strncmp (dp->name, "call", 4))
? dis_jsr : dis_branch;
}
}
/* If VEX.vvvv and EVEX.vvvv are unused, they must be all 1s, which
are all 0s in inverted form. */
if (ins->need_vex && ins->vex.register_specifier != 0)
if (ins.need_vex && ins.vex.register_specifier != 0)
{
i386_dis_printf (ins, dis_style_text, "(bad)");
return ins->end_codep - priv.the_buffer;
i386_dis_printf (&ins, dis_style_text, "(bad)");
return ins.end_codep - priv.the_buffer;
}
/* If EVEX.z is set, there must be an actual mask register in use. */
if (ins->vex.zeroing && ins->vex.mask_register_specifier == 0)
if (ins.vex.zeroing && ins.vex.mask_register_specifier == 0)
{
i386_dis_printf (ins, dis_style_text, "(bad)");
return ins->end_codep - priv.the_buffer;
i386_dis_printf (&ins, dis_style_text, "(bad)");
return ins.end_codep - priv.the_buffer;
}
switch (dp->prefix_requirement)
@ -9776,12 +9732,12 @@ print_insn (bfd_vma pc, instr_info *ins)
case PREFIX_DATA:
/* If only the data prefix is marked as mandatory, its absence renders
the encoding invalid. Most other PREFIX_OPCODE rules still apply. */
if (ins->need_vex ? !ins->vex.prefix : !(ins->prefixes & PREFIX_DATA))
if (ins.need_vex ? !ins.vex.prefix : !(ins.prefixes & PREFIX_DATA))
{
i386_dis_printf (ins, dis_style_text, "(bad)");
return ins->end_codep - priv.the_buffer;
i386_dis_printf (&ins, dis_style_text, "(bad)");
return ins.end_codep - priv.the_buffer;
}
ins->used_prefixes |= PREFIX_DATA;
ins.used_prefixes |= PREFIX_DATA;
/* Fall through. */
case PREFIX_OPCODE:
/* If the mandatory PREFIX_REPZ/PREFIX_REPNZ/PREFIX_DATA prefix is
@ -9789,79 +9745,79 @@ print_insn (bfd_vma pc, instr_info *ins)
used by putop and MMX/SSE operand and may be overridden by the
PREFIX_REPZ/PREFIX_REPNZ fix, we check the PREFIX_DATA prefix
separately. */
if (((ins->need_vex
? ins->vex.prefix == REPE_PREFIX_OPCODE
|| ins->vex.prefix == REPNE_PREFIX_OPCODE
: (ins->prefixes
if (((ins.need_vex
? ins.vex.prefix == REPE_PREFIX_OPCODE
|| ins.vex.prefix == REPNE_PREFIX_OPCODE
: (ins.prefixes
& (PREFIX_REPZ | PREFIX_REPNZ)) != 0)
&& (ins->used_prefixes
&& (ins.used_prefixes
& (PREFIX_REPZ | PREFIX_REPNZ)) == 0)
|| (((ins->need_vex
? ins->vex.prefix == DATA_PREFIX_OPCODE
: ((ins->prefixes
|| (((ins.need_vex
? ins.vex.prefix == DATA_PREFIX_OPCODE
: ((ins.prefixes
& (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))
== PREFIX_DATA))
&& (ins->used_prefixes & PREFIX_DATA) == 0))
|| (ins->vex.evex && dp->prefix_requirement != PREFIX_DATA
&& !ins->vex.w != !(ins->used_prefixes & PREFIX_DATA)))
&& (ins.used_prefixes & PREFIX_DATA) == 0))
|| (ins.vex.evex && dp->prefix_requirement != PREFIX_DATA
&& !ins.vex.w != !(ins.used_prefixes & PREFIX_DATA)))
{
i386_dis_printf (ins, dis_style_text, "(bad)");
return ins->end_codep - priv.the_buffer;
i386_dis_printf (&ins, dis_style_text, "(bad)");
return ins.end_codep - priv.the_buffer;
}
break;
case PREFIX_IGNORED:
/* Zap data size and rep prefixes from used_prefixes and reinstate their
origins in all_prefixes. */
ins->used_prefixes &= ~PREFIX_OPCODE;
if (ins->last_data_prefix >= 0)
ins->all_prefixes[ins->last_data_prefix] = 0x66;
if (ins->last_repz_prefix >= 0)
ins->all_prefixes[ins->last_repz_prefix] = 0xf3;
if (ins->last_repnz_prefix >= 0)
ins->all_prefixes[ins->last_repnz_prefix] = 0xf2;
ins.used_prefixes &= ~PREFIX_OPCODE;
if (ins.last_data_prefix >= 0)
ins.all_prefixes[ins.last_data_prefix] = 0x66;
if (ins.last_repz_prefix >= 0)
ins.all_prefixes[ins.last_repz_prefix] = 0xf3;
if (ins.last_repnz_prefix >= 0)
ins.all_prefixes[ins.last_repnz_prefix] = 0xf2;
break;
}
/* Check if the REX prefix is used. */
if ((ins->rex ^ ins->rex_used) == 0
&& !ins->need_vex && ins->last_rex_prefix >= 0)
ins->all_prefixes[ins->last_rex_prefix] = 0;
if ((ins.rex ^ ins.rex_used) == 0
&& !ins.need_vex && ins.last_rex_prefix >= 0)
ins.all_prefixes[ins.last_rex_prefix] = 0;
/* Check if the SEG prefix is used. */
if ((ins->prefixes & (PREFIX_CS | PREFIX_SS | PREFIX_DS | PREFIX_ES
if ((ins.prefixes & (PREFIX_CS | PREFIX_SS | PREFIX_DS | PREFIX_ES
| PREFIX_FS | PREFIX_GS)) != 0
&& (ins->used_prefixes & ins->active_seg_prefix) != 0)
ins->all_prefixes[ins->last_seg_prefix] = 0;
&& (ins.used_prefixes & ins.active_seg_prefix) != 0)
ins.all_prefixes[ins.last_seg_prefix] = 0;
/* Check if the ADDR prefix is used. */
if ((ins->prefixes & PREFIX_ADDR) != 0
&& (ins->used_prefixes & PREFIX_ADDR) != 0)
ins->all_prefixes[ins->last_addr_prefix] = 0;
if ((ins.prefixes & PREFIX_ADDR) != 0
&& (ins.used_prefixes & PREFIX_ADDR) != 0)
ins.all_prefixes[ins.last_addr_prefix] = 0;
/* Check if the DATA prefix is used. */
if ((ins->prefixes & PREFIX_DATA) != 0
&& (ins->used_prefixes & PREFIX_DATA) != 0
&& !ins->need_vex)
ins->all_prefixes[ins->last_data_prefix] = 0;
if ((ins.prefixes & PREFIX_DATA) != 0
&& (ins.used_prefixes & PREFIX_DATA) != 0
&& !ins.need_vex)
ins.all_prefixes[ins.last_data_prefix] = 0;
/* Print the extra ins->prefixes. */
/* Print the extra ins.prefixes. */
prefix_length = 0;
for (i = 0; i < (int) ARRAY_SIZE (ins->all_prefixes); i++)
if (ins->all_prefixes[i])
for (i = 0; i < (int) ARRAY_SIZE (ins.all_prefixes); i++)
if (ins.all_prefixes[i])
{
const char *name;
name = prefix_name (ins, ins->all_prefixes[i], orig_sizeflag);
name = prefix_name (&ins, ins.all_prefixes[i], orig_sizeflag);
if (name == NULL)
abort ();
prefix_length += strlen (name) + 1;
i386_dis_printf (ins, dis_style_mnemonic, "%s ", name);
i386_dis_printf (&ins, dis_style_mnemonic, "%s ", name);
}
/* Check maximum code length. */
if ((ins->codep - ins->start_codep) > MAX_CODE_LENGTH)
if ((ins.codep - ins.start_codep) > MAX_CODE_LENGTH)
{
i386_dis_printf (ins, dis_style_text, "(bad)");
i386_dis_printf (&ins, dis_style_text, "(bad)");
return MAX_CODE_LENGTH;
}
@ -9872,10 +9828,10 @@ print_insn (bfd_vma pc, instr_info *ins)
++op_count;
/* Calculate the number of spaces to print after the mnemonic. */
ins->obufp = ins->mnemonicendp;
ins.obufp = ins.mnemonicendp;
if (op_count > 0)
{
i = strlen (ins->obuf) + prefix_length;
i = strlen (ins.obuf) + prefix_length;
if (i < 7)
i = 7 - i;
else
@ -9885,21 +9841,21 @@ print_insn (bfd_vma pc, instr_info *ins)
i = 0;
/* Print the instruction mnemonic along with any trailing whitespace. */
i386_dis_printf (ins, dis_style_mnemonic, "%s%*s", ins->obuf, i, "");
i386_dis_printf (&ins, dis_style_mnemonic, "%s%*s", ins.obuf, i, "");
/* The enter and bound instructions are printed with operands in the same
order as the intel book; everything else is printed in reverse order. */
intel_swap_2_3 = false;
if (ins->intel_syntax || ins->two_source_ops)
if (ins.intel_syntax || ins.two_source_ops)
{
for (i = 0; i < MAX_OPERANDS; ++i)
op_txt[i] = ins->op_out[i];
op_txt[i] = ins.op_out[i];
if (ins->intel_syntax && dp && dp->op[2].rtn == OP_Rounding
if (ins.intel_syntax && dp && dp->op[2].rtn == OP_Rounding
&& dp->op[3].rtn == OP_E && dp->op[4].rtn == NULL)
{
op_txt[2] = ins->op_out[3];
op_txt[3] = ins->op_out[2];
op_txt[2] = ins.op_out[3];
op_txt[3] = ins.op_out[2];
intel_swap_2_3 = true;
}
@ -9907,18 +9863,18 @@ print_insn (bfd_vma pc, instr_info *ins)
{
bool riprel;
ins->op_ad = ins->op_index[i];
ins->op_index[i] = ins->op_index[MAX_OPERANDS - 1 - i];
ins->op_index[MAX_OPERANDS - 1 - i] = ins->op_ad;
riprel = ins->op_riprel[i];
ins->op_riprel[i] = ins->op_riprel[MAX_OPERANDS - 1 - i];
ins->op_riprel[MAX_OPERANDS - 1 - i] = riprel;
ins.op_ad = ins.op_index[i];
ins.op_index[i] = ins.op_index[MAX_OPERANDS - 1 - i];
ins.op_index[MAX_OPERANDS - 1 - i] = ins.op_ad;
riprel = ins.op_riprel[i];
ins.op_riprel[i] = ins.op_riprel[MAX_OPERANDS - 1 - i];
ins.op_riprel[MAX_OPERANDS - 1 - i] = riprel;
}
}
else
{
for (i = 0; i < MAX_OPERANDS; ++i)
op_txt[MAX_OPERANDS - 1 - i] = ins->op_out[i];
op_txt[MAX_OPERANDS - 1 - i] = ins.op_out[i];
}
needcomma = 0;
@ -9928,7 +9884,7 @@ print_insn (bfd_vma pc, instr_info *ins)
/* In Intel syntax embedded rounding / SAE are not separate operands.
Instead they're attached to the prior register operand. Simply
suppress emission of the comma to achieve that effect. */
switch (i & -(ins->intel_syntax && dp))
switch (i & -(ins.intel_syntax && dp))
{
case 2:
if (dp->op[2].rtn == OP_Rounding && !intel_swap_2_3)
@ -9940,36 +9896,58 @@ print_insn (bfd_vma pc, instr_info *ins)
break;
}
if (needcomma)
i386_dis_printf (ins, dis_style_text, ",");
if (ins->op_index[i] != -1 && !ins->op_riprel[i])
i386_dis_printf (&ins, dis_style_text, ",");
if (ins.op_index[i] != -1 && !ins.op_riprel[i])
{
bfd_vma target = (bfd_vma) ins->op_address[ins->op_index[i]];
bfd_vma target = (bfd_vma) ins.op_address[ins.op_index[i]];
if (ins->op_is_jump)
if (ins.op_is_jump)
{
ins->info->insn_info_valid = 1;
ins->info->branch_delay_insns = 0;
ins->info->data_size = 0;
ins->info->target = target;
ins->info->target2 = 0;
info->insn_info_valid = 1;
info->branch_delay_insns = 0;
info->data_size = 0;
info->target = target;
info->target2 = 0;
}
(*ins->info->print_address_func) (target, ins->info);
(*info->print_address_func) (target, info);
}
else
i386_dis_printf (ins, dis_style_text, "%s", op_txt[i]);
i386_dis_printf (&ins, dis_style_text, "%s", op_txt[i]);
needcomma = 1;
}
for (i = 0; i < MAX_OPERANDS; i++)
if (ins->op_index[i] != -1 && ins->op_riprel[i])
if (ins.op_index[i] != -1 && ins.op_riprel[i])
{
i386_dis_printf (ins, dis_style_comment_start, " # ");
(*ins->info->print_address_func) ((bfd_vma)
(ins->start_pc + (ins->codep - ins->start_codep)
+ ins->op_address[ins->op_index[i]]), ins->info);
i386_dis_printf (&ins, dis_style_comment_start, " # ");
(*info->print_address_func)
((bfd_vma)(ins.start_pc + (ins.codep - ins.start_codep)
+ ins.op_address[ins.op_index[i]]),
info);
break;
}
return ins->codep - priv.the_buffer;
return ins.codep - priv.the_buffer;
}
/* Here for backwards compatibility. When gdb stops using
print_insn_i386_att and print_insn_i386_intel these functions can
disappear, and print_insn_i386 be merged into print_insn. */
int
print_insn_i386_att (bfd_vma pc, disassemble_info *info)
{
return print_insn (pc, info, 0);
}
int
print_insn_i386_intel (bfd_vma pc, disassemble_info *info)
{
return print_insn (pc, info, 1);
}
int
print_insn_i386 (bfd_vma pc, disassemble_info *info)
{
return print_insn (pc, info, -1);
}
static const char *float_mem[] = {