Update comments in struct value for non-8-bits architectures

gdb/ChangeLog:

	* value.c (struct value): Update comments.
This commit is contained in:
Simon Marchi
2015-07-28 11:01:49 -04:00
parent 2e0569314c
commit 3723fda829
2 changed files with 19 additions and 15 deletions

View File

@ -1,3 +1,7 @@
2015-07-28 Simon Marchi <simon.marchi@ericsson.com>
* value.c (struct value): Update comments.
2015-07-28 Simon Marchi <simon.marchi@ericsson.com>
* gdbtypes.c (type_length_units): New function.

View File

@ -234,11 +234,11 @@ struct value
} computed;
} location;
/* Describes offset of a value within lval of a structure in bytes.
If lval == lval_memory, this is an offset to the address. If
lval == lval_register, this is a further offset from
location.address within the registers structure. Note also the
member embedded_offset below. */
/* Describes offset of a value within lval of a structure in target
addressable memory units. If lval == lval_memory, this is an offset to
the address. If lval == lval_register, this is a further offset from
location.address within the registers structure. Note also the member
embedded_offset below. */
int offset;
/* Only used for bitfields; number of bits contained in them. */
@ -291,19 +291,19 @@ struct value
When we store the entire object, `enclosing_type' is the run-time
type -- the complete object -- and `embedded_offset' is the
offset of `type' within that larger type, in bytes. The
value_contents() macro takes `embedded_offset' into account, so
most GDB code continues to see the `type' portion of the value,
just as the inferior would.
offset of `type' within that larger type, in target addressable memory
units. The value_contents() macro takes `embedded_offset' into account,
so most GDB code continues to see the `type' portion of the value, just
as the inferior would.
If `type' is a pointer to an object, then `enclosing_type' is a
pointer to the object's run-time type, and `pointed_to_offset' is
the offset in bytes from the full object to the pointed-to object
-- that is, the value `embedded_offset' would have if we followed
the pointer and fetched the complete object. (I don't really see
the point. Why not just determine the run-time type when you
indirect, and avoid the special case? The contents don't matter
until you indirect anyway.)
the offset in target addressable memory units from the full object
to the pointed-to object -- that is, the value `embedded_offset' would
have if we followed the pointer and fetched the complete object.
(I don't really see the point. Why not just determine the
run-time type when you indirect, and avoid the special case? The
contents don't matter until you indirect anyway.)
If we're not doing anything fancy, `enclosing_type' is equal to
`type', and `embedded_offset' is zero, so everything works