
ThrowTheSwitch.org Coding Standard

Hi. Welcome to the coding standard for ThrowTheSwitch.org. For the most part, we try to follow
these standards to unify our contributors’ code into a cohesive unit (puns intended). You might
find places where these standards aren’t followed. We’re not perfect. Please be polite where
you notice these discrepancies and we’ll try to be polite when we notice yours. ;)

Why Have A Coding Standard?
Being consistent makes code easier to understand. We’ve made an attempt to keep our
standard simple because we also believe that we can only expect someone to follow something
that is understandable. Please do your best.

Our Philosophy
Before we get into details on syntax, let’s take a moment to talk about our vision for these tools.
We’re C developers and embedded software developers. These tools are great to test any C
code, but catering to embedded software has made us more tolerant of compiler quirks. There
are a LOT of quirky compilers out there. By quirky I mean “doesn’t follow standards because
they feel like they have a license to do as they wish.”

Our philosophy is “support every compiler we can”. Most often, this means that we aim for
writing C code that is standards compliant (often C89… that seems to be a sweet spot that is
almost always compatible). But it also means these tools are tolerant of things that aren’t
common. Some that aren’t even compliant. There are configuration options to override the size
of standard types. There are configuration options to force Unity to not use certain standard
library functions. A lot of Unity is configurable and we have worked hard to make it not TOO ugly
in the process.

Similarly, our tools that parse C do their best. They aren’t full C parsers (yet) and, even if they
were, they would still have to accept non-standard additions like gcc extensions or specifying @
0x1000 to force a variable to compile to a particular location. It’s just what we do, because we
like everything to Just Work™.

Speaking of having things Just Work™, that’s our second philosophy. By that, we mean that we
do our best to have EVERY configuration option have a logical default. We believe that if you’re
working with a simple compiler and target, you shouldn’t need to configure very much… we try
to make the tools guess as much as they can, but give the user the power to override it when
it’s wrong.

__

ThrowTheSwitch.org Mike Karlesky
 ​Mark VanderVoord

http://vandervoord.net/
http://throwtheswitch.org/
http://karlesky.net/

Naming Things
Let’s talk about naming things. Programming is all about naming things. We name files,
functions, variables, and so much more. While we’re not always going to find the best name for
something, we actually put quite a bit of effort into finding ​What Something WANTS to be
Called​™.

When naming things, we more or less follow this hierarchy, the first being the most important to
us (but we do all four whenever possible):

1. Readable
2. Descriptive
3. Consistent
4. Memorable

Readable
We want to read our code. This means we like names and flow that are more naturally read. We
try to avoid double negatives. We try to avoid cryptic abbreviations (sticking to ones we feel are
common).

Descriptive
We like descriptive names for things, especially functions and variables. Finding the right name
for something is an important endeavor. You might notice from poking around our code that this
often results in names that are a little longer than the average. Guilty. We’re okay with a tiny bit
more typing if it means our code is easier to understand.

There are two exceptions to this rule that we also stick to as religiously as possible:

First, while we realize hungarian notation (and similar systems for encoding type information into
variable names) is providing a more descriptive name, we feel that (for the average developer) it
takes away from readability and therefore is to be avoided.

Second, loop counters and other local throw-away variables often have a purpose which is
obvious. There’s no need, therefore, to get carried away with complex naming. We find i, j, and
k are better loop counters than loopCounterVar or whatnot. We only break this rule when we
see that more description could improve understanding of an algorithm.

__

ThrowTheSwitch.org Mike Karlesky
 ​Mark VanderVoord

http://karlesky.net/
http://throwtheswitch.org/
http://vandervoord.net/

Consistent
We like consistency, but we’re not really obsessed with it. We try to name our configuration
macros in a consistent fashion… you’ll notice a repeated use of UNITY_EXCLUDE_BLAH or
UNITY_USES_BLAH macros. This helps users avoid having to remember each macro’s details.

Memorable
Where ever it doesn’t violate the above principles, we try to apply memorable names.
Sometimes this means using something that is simply descriptive, but often we strive for
descriptive AND unique… we like quirky names that stand out in our memory and are easier to
search for. Take a look through the file names in Ceedling and you’ll get a good idea of what we
are talking about here. Why use preprocess when you can use preprocessinator? Or what
better describes a module in charge of invoking tasks during releases than release_invoker?
Don’t get carried away. The names are still descriptive and fulfill the above requirements, but
they don’t feel stale.

C and C++ Details
We don’t really want to add to the style battles out there. Tabs or spaces? How many spaces?
Where do the braces go? These are age-old questions that will never be answered… or at least
not answered in a way that will make everyone happy.

We’ve decided on our own style preferences. If you’d like to contribute to these projects (and we
hope that you do), then we ask if you do your best to follow the same. It will only hurt a little. We
promise.

Whitespace
Our C-style is to use spaces and to use 4 of them per indent level. It’s a nice power-of-2 number
that looks decent on a wide screen. We have no more reason than that. We break that rule
when we have lines that wrap (macros or function arguments or whatnot). When that happens,
we like to indent further to line things up in nice tidy columns.

 if (stuff_happened)
 {
 do_something();
 }

__

ThrowTheSwitch.org Mike Karlesky
 ​Mark VanderVoord

http://karlesky.net/
http://vandervoord.net/
http://throwtheswitch.org/

Case
● Files - all lower case with underscores.
● Variables - all lower case with underscores
● Macros - all caps with underscores.
● Typedefs - all caps with underscores. (also ends with _T).
● Functions - camel cased. Usually named ModuleName_FuncName
● Constants and Globals - camel cased.

Braces
The left brace is on the next line after the declaration. The right brace is directly below that.
Everything in between in indented one level. If you’re catching an error and you have a one-line,
go ahead and to it on the same line.

 while (blah)
 {
 //Like so. Even if only one line, we use braces.
 }

Comments
Do you know what we hate? Old-school C block comments. BUT, we’re using them anyway. As
we mentioned, our goal is to support every compiler we can, especially embedded compilers.
There are STILL C compilers out there that only support old-school block comments. So that is
what we’re using. We apologize. We think they are ugly too.

Ruby Details
Is there really such thing as a Ruby coding standard? Ruby is such a free form language, it
seems almost sacrilegious to suggest that people should comply to one method! We’ll keep it
really brief!

Whitespace
Our Ruby style is to use spaces and to use 2 of them per indent level. It’s a nice power-of-2
number that really grooves with Ruby’s compact style. We have no more reason than that. We
break that rule when we have lines that wrap. When that happens, we like to indent further to
line things up in nice tidy columns.

__

ThrowTheSwitch.org Mike Karlesky
 ​Mark VanderVoord

http://throwtheswitch.org/
http://vandervoord.net/
http://karlesky.net/

Case
● Files - all lower case with underscores.
● Variables - all lower case with underscores
● Classes, Modules, etc - Camel cased.
● Functions - all lower case with underscores
● Constants - all upper case with underscores

Documentation
Egad. Really? We use markdown and we like pdf files because they can be made to look nice
while still being portable. Good enough?

__

ThrowTheSwitch.org Mike Karlesky
 ​Mark VanderVoord

http://vandervoord.net/
http://throwtheswitch.org/
http://karlesky.net/

