mirror of
https://github.com/ThrowTheSwitch/Unity.git
synced 2025-12-19 07:18:10 +08:00
Rewrite UnityPrintFloat to match printf("%.6g").
The existing implementation was not very good:
- It printed all very small values as "0.000000..."
- It did not distinguish positive and negative zero
- In some cases it printed extra garbage digits for single-precision values
(e.g. 3.9e+30 was printed as 3.90000013+30)
Tests have been updated to check that we now match printf("%.6g") for
1,000,000 randomly chosen values, except for rounding of the 6th digit.
This commit is contained in:
153
src/unity.c
153
src/unity.c
@@ -235,95 +235,96 @@ void UnityPrintMask(const UNITY_UINT mask, const UNITY_UINT number)
|
||||
|
||||
/*-----------------------------------------------*/
|
||||
#ifndef UNITY_EXCLUDE_FLOAT_PRINT
|
||||
static void UnityPrintDecimalAndNumberWithLeadingZeros(UNITY_INT32 fraction_part, UNITY_INT32 divisor)
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('.');
|
||||
while (divisor > 0)
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('0' + fraction_part / divisor);
|
||||
fraction_part %= divisor;
|
||||
divisor /= 10;
|
||||
if (fraction_part == 0) break; /* Truncate trailing 0's */
|
||||
}
|
||||
}
|
||||
#ifndef UNITY_ROUND_TIES_AWAY_FROM_ZERO
|
||||
/* If rounds up && remainder 0.5 && result odd && below cutoff for double precision issues */
|
||||
#define ROUND_TIES_TO_EVEN(orig, num_int, num) \
|
||||
if (num_int > (num) && (num) - (num_int-1) <= 0.5 && (num_int & 1) == 1 && orig < 1e22) \
|
||||
num_int -= 1 /* => a tie to round down to even */
|
||||
#else
|
||||
#define ROUND_TIES_TO_EVEN(orig, num_int, num) /* Remove macro */
|
||||
#endif
|
||||
|
||||
/* Printing floating point numbers is hard. Some goals of this implementation: works for embedded
|
||||
* systems, floats or doubles, and has a reasonable format. The key paper in this area,
|
||||
* 'How to Print Floating-Point Numbers Accurately' by Steele & White, shows an approximation by
|
||||
* scaling called Dragon 2. This code uses a similar idea. The other core algorithm uses casts and
|
||||
* floating subtraction to give exact remainders after the decimal, to be scaled into an integer.
|
||||
* Extra trailing 0's are excluded. The output defaults to rounding to nearest, ties to even. You
|
||||
* can enable rounding ties away from zero. Note: UNITY_DOUBLE param can typedef to float or double
|
||||
|
||||
* The old version required compiling in snprintf. For reference, with a similar format as now:
|
||||
* char buf[19];
|
||||
* if (number > 4294967296.0 || -number > 4294967296.0) snprintf(buf, sizeof buf, "%.8e", number);
|
||||
* else snprintf(buf, sizeof buf, "%.6f", number);
|
||||
* UnityPrint(buf);
|
||||
*/
|
||||
/* This function prints a floating-point value in a format similar to
|
||||
* printf("%.6g"). It can work with either single- or double-precision,
|
||||
* but for simplicity, it prints only 6 significant digits in either case.
|
||||
* Printing more than 6 digits accurately is hard (at least in the single-
|
||||
* precision case) and isn't attempted here. */
|
||||
void UnityPrintFloat(const UNITY_DOUBLE input_number)
|
||||
{
|
||||
UNITY_DOUBLE number;
|
||||
UNITY_DOUBLE number = input_number;
|
||||
|
||||
if (input_number < 0)
|
||||
/* print minus sign (including for negative zero) */
|
||||
if (number < 0.0f || (number == 0.0f && 1.0f / number < 0.0f))
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('-');
|
||||
number = -input_number;
|
||||
} else
|
||||
{
|
||||
number = input_number;
|
||||
number = -number;
|
||||
}
|
||||
|
||||
if (isnan(number)) UnityPrint(UnityStrNaN);
|
||||
else if (isinf(number)) UnityPrintLen(UnityStrInf, 3);
|
||||
else if (number <= 0.0000005 && number > 0) UnityPrint("0.000000..."); /* Small number */
|
||||
else if (number < 4294967295.9999995) /* Rounded result fits in 32 bits, "%.6f" format */
|
||||
/* handle zero, NaN, and +/- infinity */
|
||||
if (number == 0.0f) UnityPrint("0");
|
||||
else if (isnan(number)) UnityPrint("nan");
|
||||
else if (isinf(number)) UnityPrint("inf");
|
||||
else
|
||||
{
|
||||
const UNITY_INT32 divisor = 1000000/10;
|
||||
UNITY_UINT32 integer_part = (UNITY_UINT32)number;
|
||||
UNITY_INT32 fraction_part = (UNITY_INT32)((number - (UNITY_DOUBLE)integer_part)*1000000.0 + 0.5);
|
||||
/* Double precision calculation gives best performance for six rounded decimal places */
|
||||
ROUND_TIES_TO_EVEN(number, fraction_part, (number - (UNITY_DOUBLE)integer_part)*1000000.0);
|
||||
int exponent = 0;
|
||||
|
||||
if (fraction_part == 1000000) /* Carry across the decimal point */
|
||||
/* scale up or down by powers of 10 */
|
||||
while (number < 100000.0f / 1e6f) { number *= 1e6f; exponent -= 6; }
|
||||
while (number < 100000.0f) { number *= 10.0f; exponent--; }
|
||||
while (number > 1000000.0f * 1e6f) { number /= 1e6f; exponent += 6; }
|
||||
while (number > 1000000.0f) { number /= 10.0f; exponent++; }
|
||||
|
||||
/* round to nearest integer */
|
||||
UNITY_INT32 n = ((UNITY_INT32)(number + number) + 1) / 2;
|
||||
if (n > 999999)
|
||||
{
|
||||
fraction_part = 0;
|
||||
integer_part += 1;
|
||||
}
|
||||
|
||||
UnityPrintNumberUnsigned(integer_part);
|
||||
UnityPrintDecimalAndNumberWithLeadingZeros(fraction_part, divisor);
|
||||
}
|
||||
else /* Number is larger, use exponential format of 9 digits, "%.8e" */
|
||||
{
|
||||
const UNITY_INT32 divisor = 1000000000/10;
|
||||
UNITY_INT32 integer_part;
|
||||
UNITY_DOUBLE_TYPE divide = 10.0;
|
||||
int exponent = 9;
|
||||
|
||||
while (number / divide >= 1000000000.0 - 0.5)
|
||||
{
|
||||
divide *= 10;
|
||||
n = 100000;
|
||||
exponent++;
|
||||
}
|
||||
integer_part = (UNITY_INT32)(number / divide + 0.5);
|
||||
/* Double precision calculation required for float, to produce 9 rounded digits */
|
||||
ROUND_TIES_TO_EVEN(number, integer_part, number / divide);
|
||||
|
||||
UNITY_OUTPUT_CHAR('0' + integer_part / divisor);
|
||||
UnityPrintDecimalAndNumberWithLeadingZeros(integer_part % divisor, divisor / 10);
|
||||
UNITY_OUTPUT_CHAR('e');
|
||||
UNITY_OUTPUT_CHAR('+');
|
||||
if (exponent < 10) UNITY_OUTPUT_CHAR('0');
|
||||
UnityPrintNumber(exponent);
|
||||
/* determine where to place decimal point */
|
||||
int decimals = (exponent <= 0 && exponent >= -9) ? -exponent : 5;
|
||||
|
||||
exponent += decimals;
|
||||
|
||||
/* truncate trailing zeroes after decimal point */
|
||||
while (decimals > 0 && n % 10 == 0)
|
||||
{
|
||||
n /= 10;
|
||||
decimals--;
|
||||
}
|
||||
|
||||
/* build up buffer in reverse order */
|
||||
char buf[16];
|
||||
int digits = 0;
|
||||
while (n != 0 || digits < decimals + 1)
|
||||
{
|
||||
buf[digits++] = (char)('0' + n % 10);
|
||||
n /= 10;
|
||||
}
|
||||
while (digits > 0)
|
||||
{
|
||||
if(digits == decimals) UNITY_OUTPUT_CHAR('.');
|
||||
UNITY_OUTPUT_CHAR(buf[--digits]);
|
||||
}
|
||||
|
||||
/* print exponent if needed */
|
||||
if (exponent != 0)
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('e');
|
||||
|
||||
if(exponent < 0)
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('-');
|
||||
exponent = -exponent;
|
||||
}
|
||||
else
|
||||
{
|
||||
UNITY_OUTPUT_CHAR('+');
|
||||
}
|
||||
|
||||
digits = 0;
|
||||
while (exponent != 0 || digits < 2)
|
||||
{
|
||||
buf[digits++] = (char)('0' + exponent % 10);
|
||||
exponent /= 10;
|
||||
}
|
||||
while (digits > 0)
|
||||
{
|
||||
UNITY_OUTPUT_CHAR(buf[--digits]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* ! UNITY_EXCLUDE_FLOAT_PRINT */
|
||||
|
||||
Reference in New Issue
Block a user