Files
2019-01-30 11:05:53 +08:00

658 lines
21 KiB
C

// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "FreeRTOS.h"
#include "freertos/semphr.h"
#include "esp8266/eagle_soc.h"
#include "esp8266/spi_struct.h"
#include "esp8266/pin_mux_register.h"
#include "esp_libc.h"
#include "esp_heap_caps.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "rom/ets_sys.h"
#include "spi.h"
#define ENTER_CRITICAL() portENTER_CRITICAL()
#define EXIT_CRITICAL() portEXIT_CRITICAL()
static const char *TAG = "spi";
#define SPI_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define spi_intr_enable() _xt_isr_unmask(1 << ETS_SPI_INUM)
#define spi_intr_disable() _xt_isr_mask(1 << ETS_SPI_INUM)
#define spi_intr_register(a, b) _xt_isr_attach(ETS_SPI_INUM, (a), (b))
/* SPI interrupt status register address definition for determining the interrupt source */
#define DPORT_SPI_INT_STATUS_REG 0x3ff00020
#define DPORT_SPI_INT_STATUS_SPI0 BIT4
#define DPORT_SPI_INT_STATUS_SPI1 BIT7
typedef struct {
spi_mode_t mode;
spi_interface_t interface;
SemaphoreHandle_t trans_mux;
spi_event_callback_t event_cb;
} spi_object_t;
static spi_object_t *spi_object[SPI_NUM_MAX] = {NULL, NULL};
/* DRAM_ATTR is required to avoid SPI array placed in flash, due to accessed from ISR */
static DRAM_ATTR spi_dev_t *const SPI[SPI_NUM_MAX] = {&SPI0, &SPI1};
esp_err_t spi_get_clk_div(spi_host_t host, spi_clk_div_t *clk_div)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(clk_div, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
if (SPI[host]->clock.clk_equ_sysclk) {
*clk_div = SPI_80MHz_DIV;
}
*clk_div = SPI[host]->clock.clkcnt_n + 1;
return ESP_OK;
}
esp_err_t spi_set_clk_div(spi_host_t host, spi_clk_div_t *clk_div)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(clk_div, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
ENTER_CRITICAL();
if (SPI_MASTER_MODE == spi_object[host]->mode) {
if (SPI_80MHz_DIV == *clk_div) {
switch (host) {
case CSPI_HOST: {
SET_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI0_CLK_EQU_SYS_CLK);
}
break;
case HSPI_HOST: {
SET_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI1_CLK_EQU_SYS_CLK);
}
break;
}
SPI[host]->clock.clk_equ_sysclk = true;
} else {
// Configure the IO_MUX clock (required, otherwise the clock output will be confusing)
switch (host) {
case CSPI_HOST: {
CLEAR_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI0_CLK_EQU_SYS_CLK);
}
break;
case HSPI_HOST: {
CLEAR_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI1_CLK_EQU_SYS_CLK);
}
break;
}
// FRE(SCLK) = clk_equ_sysclk ? 80MHz : APB_CLK(80MHz) / clkdiv_pre / clkcnt
SPI[host]->clock.clk_equ_sysclk = false;
SPI[host]->clock.clkdiv_pre = 0;
SPI[host]->clock.clkcnt_n = *clk_div - 1;
// In the master mode clkcnt_h = floor((clkcnt_n+1)/2-1). In the slave mode it must be 0
SPI[host]->clock.clkcnt_h = *clk_div / 2 - 1;
// In the master mode clkcnt_l = clkcnt_n. In the slave mode it must be 0
SPI[host]->clock.clkcnt_l = *clk_div - 1;
}
} else {
// Slave mode must be set to 0
SPI[host]->clock.val = 0;
}
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_get_intr_enable(spi_host_t host, spi_intr_enable_t *intr_enable)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(intr_enable, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
intr_enable->val = (SPI[host]->slave.val >> 5) & 0x1F;
return ESP_OK;
}
esp_err_t spi_set_intr_enable(spi_host_t host, spi_intr_enable_t *intr_enable)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(intr_enable, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
ENTER_CRITICAL();
SPI[host]->slave.rd_buf_inten = intr_enable->read_buffer;
SPI[host]->slave.wr_buf_inten = intr_enable->write_buffer;
SPI[host]->slave.rd_sta_inten = intr_enable->read_status;
SPI[host]->slave.wr_sta_inten = intr_enable->write_status;
SPI[host]->slave.trans_inten = intr_enable->trans_done;
// Clear interrupt status register
SPI[host]->slave.rd_buf_done = false;
SPI[host]->slave.wr_buf_done = false;
SPI[host]->slave.rd_sta_done = false;
SPI[host]->slave.wr_sta_done = false;
SPI[host]->slave.trans_done = false;
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_get_mode(spi_host_t host, spi_mode_t *mode)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(mode, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
*mode = spi_object[host]->mode;
return ESP_OK;
}
esp_err_t spi_set_mode(spi_host_t host, spi_mode_t *mode)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(mode, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
spi_object[host]->mode = *mode;
ENTER_CRITICAL();
// Disable flash operation mode
SPI[host]->user.flash_mode = false;
if (SPI_MASTER_MODE == *mode) {
// Set to Master mode
SPI[host]->pin.slave_mode = false;
SPI[host]->slave.slave_mode = false;
// Master uses the entire hardware buffer to improve transmission speed
SPI[host]->user.usr_mosi_highpart = false;
SPI[host]->user.usr_miso_highpart = false;
SPI[host]->user.usr_mosi = true;
// Create hardware cs in advance
SPI[host]->user.cs_setup = true;
// Hysteresis to keep hardware cs
SPI[host]->user.cs_hold = true;
SPI[host]->user.duplex = true;
SPI[host]->user.ck_i_edge = true;
SPI[host]->ctrl2.mosi_delay_num = 0;
SPI[host]->ctrl2.miso_delay_num = 1;
} else {
// Set to Slave mode
SPI[host]->pin.slave_mode = true;
SPI[host]->slave.slave_mode = true;
SPI[host]->user.usr_miso_highpart = true;
SPI[host]->ctrl2.mosi_delay_num = 1;
SPI[host]->ctrl2.miso_delay_num = 0;
SPI[host]->slave.wr_rd_sta_en = 1;
SPI[host]->slave1.status_bitlen = 31;
SPI[host]->slave1.status_readback = 0;
// Put the slave's miso on the highpart, so you can only send 256bits
// In Slave mode miso, mosi length is the same
SPI[host]->slave1.buf_bitlen = 255;
SPI[host]->cmd.usr = 1;
}
SPI[host]->user.fwrite_dual = false;
SPI[host]->user.fwrite_quad = false;
SPI[host]->user.fwrite_dio = false;
SPI[host]->user.fwrite_qio = false;
SPI[host]->ctrl.fread_dual = false;
SPI[host]->ctrl.fread_quad = false;
SPI[host]->ctrl.fread_dio = false;
SPI[host]->ctrl.fread_qio = false;
SPI[host]->ctrl.fastrd_mode = true;
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_get_interface(spi_host_t host, spi_interface_t *interface)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(interface, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
*interface = spi_object[host]->interface;
return ESP_OK;
}
esp_err_t spi_set_interface(spi_host_t host, spi_interface_t *interface)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(interface, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
spi_object[host]->interface = *interface;
ENTER_CRITICAL();
switch (host) {
case CSPI_HOST: {
// Initialize SPI IO
PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_CLK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SPICLK);
if (interface->mosi_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_DATA1_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, FUNC_SPID_MOSI);
}
if (interface->miso_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_DATA0_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, FUNC_SPIQ_MISO);
}
if (interface->cs_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_CMD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, FUNC_SPICS0);
}
}
break;
case HSPI_HOST: {
// Initialize HSPI IO
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTMS_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, FUNC_HSPI_CLK); //GPIO14 is SPI CLK pin (Clock)
if (interface->mosi_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_HSPID_MOSI); //GPIO13 is SPI MOSI pin (Master Data Out)
}
if (interface->miso_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDI_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, FUNC_HSPIQ_MISO); //GPIO12 is SPI MISO pin (Master Data In)
}
if (interface->cs_en) {
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDO_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_HSPI_CS0);
}
}
break;
}
// Set the clock polarity and phase
SPI[host]->pin.ck_idle_edge = interface->cpol;
if (interface->cpol == interface->cpha) {
SPI[host]->user.ck_out_edge = false;
} else {
SPI[host]->user.ck_out_edge = true;
}
// Set data bit order
SPI[host]->ctrl.wr_bit_order = interface->bit_tx_order;
SPI[host]->ctrl.rd_bit_order = interface->bit_rx_order;
// Set data byte order
SPI[host]->user.wr_byte_order = interface->byte_tx_order;
SPI[host]->user.rd_byte_order = interface->byte_rx_order;
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_get_dummy(spi_host_t host, uint16_t *bitlen)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(bitlen, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
if (SPI[host]->user.usr_dummy) {
*bitlen = SPI[host]->user1.usr_dummy_cyclelen + 1;
} else {
*bitlen = 0;
}
return ESP_OK;
}
esp_err_t spi_set_dummy(spi_host_t host, uint16_t *bitlen)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(bitlen, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
SPI_CHECK(*bitlen <= 256, "spi dummy must be shorter than 256 bits", ESP_ERR_INVALID_ARG);
ENTER_CRITICAL();
if (*bitlen) {
SPI[host]->user.usr_dummy = 1;
SPI[host]->user1.usr_dummy_cyclelen = *bitlen - 1;
} else {
SPI[host]->user.usr_dummy = 0;
}
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_get_event_callback(spi_host_t host, spi_event_callback_t *event_cb)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(event_cb, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
*event_cb = spi_object[host]->event_cb;
return ESP_OK;
}
esp_err_t spi_set_event_callback(spi_host_t host, spi_event_callback_t *event_cb)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(event_cb, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
spi_object[host]->event_cb = *event_cb;
return ESP_OK;
}
esp_err_t spi_slave_get_status(spi_host_t host, uint32_t *status)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(SPI_SLAVE_MODE == spi_object[host]->mode, "this function must used by spi slave mode", ESP_FAIL);
SPI_CHECK(status, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
ENTER_CRITICAL();
*status = SPI[host]->wr_status;
EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t spi_slave_set_status(spi_host_t host, uint32_t *status)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(SPI_SLAVE_MODE == spi_object[host]->mode, "this function must used by spi slave mode", ESP_FAIL);
SPI_CHECK(status, "parameter pointer is empty", ESP_ERR_INVALID_ARG);
ENTER_CRITICAL();
SPI[host]->rd_status.val = *status;
EXIT_CRITICAL();
return ESP_OK;
}
static esp_err_t spi_master_trans(spi_host_t host, spi_trans_t trans)
{
SPI_CHECK(trans.bits.cmd <= 16, "spi cmd must be shorter than 16 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.addr <= 32, "spi addr must be shorter than 32 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.mosi <= 512, "spi mosi must be shorter than 512 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.miso <= 512, "spi miso must be shorter than 512 bits", ESP_ERR_INVALID_ARG);
int x, y;
// Waiting for an incomplete transfer
while (SPI[host]->cmd.usr);
ENTER_CRITICAL();
// Set the cmd length and transfer cmd
if (trans.bits.cmd && trans.cmd) {
SPI[host]->user.usr_command = 1;
SPI[host]->user2.usr_command_bitlen = trans.bits.cmd - 1;
SPI[host]->user2.usr_command_value = *trans.cmd;
} else {
SPI[host]->user.usr_command = 0;
}
// Set addr length and transfer addr
if (trans.bits.addr && trans.addr) {
SPI[host]->user.usr_addr = 1;
SPI[host]->user1.usr_addr_bitlen = trans.bits.addr - 1;
SPI[host]->addr = *trans.addr;
} else {
SPI[host]->user.usr_addr = 0;
}
// Set mosi length and transmit mosi
if (trans.bits.mosi && trans.mosi) {
SPI[host]->user.usr_mosi = 1;
SPI[host]->user1.usr_mosi_bitlen = trans.bits.mosi - 1;
for (x = 0; x < trans.bits.mosi; x += 32) {
y = x / 32;
SPI[host]->data_buf[y] = trans.mosi[y];
}
} else {
SPI[host]->user.usr_mosi = 0;
}
// Set the length of the miso
if (trans.bits.miso && trans.miso) {
SPI[host]->user.usr_miso = 1;
SPI[host]->user1.usr_miso_bitlen = trans.bits.miso - 1;
} else {
SPI[host]->user.usr_miso = 0;
}
// Call the event callback function to send a transfer start event
if (spi_object[host]->event_cb) {
spi_object[host]->event_cb(SPI_TRANS_START_EVENT, NULL);
}
// Start transmission
SPI[host]->cmd.usr = 1;
// Receive miso data
if (trans.bits.miso && trans.miso) {
while (SPI[host]->cmd.usr);
for (x = 0; x < trans.bits.miso; x += 32) {
y = x / 32;
trans.miso[y] = SPI[host]->data_buf[y];
}
}
EXIT_CRITICAL();
return ESP_OK;
}
static esp_err_t spi_slave_trans(spi_host_t host, spi_trans_t trans)
{
SPI_CHECK(trans.bits.cmd >= 3 && trans.bits.cmd <= 16, "spi cmd must be longer than 3 bits and shorter than 16 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.addr >= 1 && trans.bits.addr <= 32, "spi addr must be longer than 1 bits and shorter than 32 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.miso <= 256, "spi miso must be shorter than 256 bits", ESP_ERR_INVALID_ARG);
SPI_CHECK(trans.bits.mosi <= 256, "spi mosi must be shorter than 256 bits", ESP_ERR_INVALID_ARG);
int x, y;
ENTER_CRITICAL();
// Set cmd length and receive cmd
SPI[host]->user2.usr_command_bitlen = trans.bits.cmd - 1;
if (trans.cmd) {
*trans.cmd = SPI[host]->user2.usr_command_value;
}
// Set addr length and transfer addr
SPI[host]->slave1.wr_addr_bitlen = trans.bits.addr - 1;
SPI[host]->slave1.rd_addr_bitlen = trans.bits.addr - 1;
if (trans.addr) {
*trans.addr = SPI[host]->addr;
}
// Set the length of the miso and transfer the miso
if (trans.bits.miso && trans.miso) {
for (x = 0; x < trans.bits.miso; x += 32) {
y = x / 32;
SPI[host]->data_buf[y + 8] = trans.miso[y];
}
}
// Call the event callback function to send a transfer start event
if (spi_object[host]->event_cb) {
spi_object[host]->event_cb(SPI_TRANS_START_EVENT, NULL);
}
// Receive mosi data
if (trans.bits.mosi && trans.mosi) {
for (x = 0; x < trans.bits.mosi; x += 32) {
y = x / 32;
trans.mosi[y] = SPI[host]->data_buf[y];
}
}
EXIT_CRITICAL();
return ESP_OK;
}
static esp_err_t spi_trans_static(spi_host_t host, spi_trans_t trans)
{
int ret;
if (SPI_MASTER_MODE == spi_object[host]->mode) {
ret = spi_master_trans(host, trans);
} else {
ret = spi_slave_trans(host, trans);
}
return ret;
}
esp_err_t spi_trans(spi_host_t host, spi_trans_t trans)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
SPI_CHECK(trans.bits.val, "trans bits is empty", ESP_ERR_INVALID_ARG);
int ret;
xSemaphoreTake(spi_object[host]->trans_mux, portMAX_DELAY);
ret = spi_trans_static(host, trans);
xSemaphoreGive(spi_object[host]->trans_mux);
return ret;
}
static IRAM_ATTR void spi_intr(void *arg)
{
spi_host_t host;
uint32_t trans_done;
if (READ_PERI_REG(DPORT_SPI_INT_STATUS_REG) & DPORT_SPI_INT_STATUS_SPI0) { // DPORT_SPI_INT_STATUS_SPI0
trans_done = SPI0.slave.val & 0x1F;
SPI0.slave.val &= ~0x3FF;
host = CSPI_HOST;
} else if (READ_PERI_REG(DPORT_SPI_INT_STATUS_REG) & DPORT_SPI_INT_STATUS_SPI1) { // DPORT_SPI_INT_STATUS_SPI1
trans_done = SPI1.slave.val & 0x1F;
SPI1.slave.val &= ~0x1F;
host = HSPI_HOST;
} else {
return;
}
if (spi_object[host]) {
if (spi_object[host]->event_cb) {
spi_object[host]->event_cb(SPI_TRANS_DONE_EVENT, &trans_done);
}
}
}
esp_err_t spi_deinit(spi_host_t host)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(spi_object[host], "spi has not been initialized yet", ESP_FAIL);
spi_intr_enable_t intr_enable;
// Turn off the current host interrupt enable
intr_enable.val = 0;
spi_set_intr_enable(host, &intr_enable);
// Turn off the SPI interrupt if all other hosts are not initialized
if (host == CSPI_HOST) {
if (spi_object[HSPI_HOST] == NULL) {
spi_intr_disable();
}
} else {
if (spi_object[CSPI_HOST] == NULL) {
spi_intr_disable();
}
}
// Waiting for all transfers to complete
while (SPI[host]->cmd.usr);
// Call the event callback function to send the SPI_DEINIT event
if (spi_object[host]->event_cb) {
spi_object[host]->event_cb(SPI_DEINIT_EVENT, NULL);
}
if (spi_object[host]->trans_mux) {
vSemaphoreDelete(spi_object[host]->trans_mux);
}
free(spi_object[host]);
spi_object[host] = NULL;
return ESP_OK;
}
esp_err_t spi_init(spi_host_t host, spi_config_t *config)
{
SPI_CHECK(host < SPI_NUM_MAX, "host num error", ESP_ERR_INVALID_ARG);
SPI_CHECK(host > CSPI_HOST, "CSPI_HOST can't support now", ESP_FAIL);
SPI_CHECK(NULL == spi_object[host], "spi has been initialized", ESP_FAIL);
spi_object[host] = (spi_object_t *)malloc(sizeof(spi_object_t));
SPI_CHECK(spi_object[host], "malloc fail", ESP_ERR_NO_MEM);
spi_object[host]->trans_mux = xSemaphoreCreateMutex();
if (NULL == spi_object[host]->trans_mux) {
spi_deinit(host);
SPI_CHECK(false, "Semaphore create fail", ESP_ERR_NO_MEM);
}
uint16_t dummy_bitlen = 0;
spi_set_event_callback(host, &config->event_cb);
spi_set_mode(host, &config->mode);
spi_set_interface(host, &config->interface);
spi_set_clk_div(host, &config->clk_div);
spi_set_dummy(host, &dummy_bitlen);
spi_set_intr_enable(host, &config->intr_enable);
spi_intr_register(spi_intr, NULL);
spi_intr_enable();
if (spi_object[host]->event_cb) {
spi_object[host]->event_cb(SPI_INIT_EVENT, NULL);
}
return ESP_OK;
}