Files
2019-01-29 09:15:55 +08:00

355 lines
8.9 KiB
C

// Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include "esp_log.h"
#include "esp_system.h"
#include "crc.h"
#include "esp8266/eagle_soc.h"
#include "esp8266/efuse_register.h"
#include "FreeRTOS.h"
#include "nvs.h"
#include "nvs_flash.h"
static const char* TAG = "system_api";
static uint8_t base_mac_addr[6] = { 0 };
esp_err_t esp_base_mac_addr_set(uint8_t *mac)
{
if (mac == NULL) {
ESP_LOGE(TAG, "Base MAC address is NULL");
return ESP_ERR_INVALID_ARG;
}
memcpy(base_mac_addr, mac, 6);
return ESP_OK;
}
esp_err_t esp_base_mac_addr_get(uint8_t *mac)
{
uint8_t null_mac[6] = {0};
if (memcmp(base_mac_addr, null_mac, 6) == 0) {
ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
return ESP_ERR_INVALID_MAC;
}
memcpy(mac, base_mac_addr, 6);
return ESP_OK;
}
esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
{
uint32_t efuse[4];
uint8_t efuse_crc = 0;
uint8_t calc_crc = 0;
uint8_t version;
uint8_t use_default = 1;
efuse[0] = REG_READ(EFUSE_DATA0_REG);
efuse[1] = REG_READ(EFUSE_DATA1_REG);
efuse[2] = REG_READ(EFUSE_DATA2_REG);
efuse[3] = REG_READ(EFUSE_DATA3_REG);
mac[3] = efuse[1] >> 8;
mac[4] = efuse[1];
mac[5] = efuse[0] >> 24;
if (efuse[2] & EFUSE_IS_48BITS_MAC) {
uint8_t tmp_mac[4];
mac[0] = efuse[3] >> 16;
mac[1] = efuse[3] >> 8;
mac[2] = efuse[3];
use_default = 0;
tmp_mac[0] = mac[2];
tmp_mac[1] = mac[1];
tmp_mac[2] = mac[0];
efuse_crc = efuse[2] >> 24;
calc_crc = esp_crc8(tmp_mac, 3);
if (efuse_crc != calc_crc)
use_default = 1;
if (!use_default) {
version = (efuse[1] >> EFUSE_VERSION_S) & EFUSE_VERSION_V;
if (version == EFUSE_VERSION_1 || version == EFUSE_VERSION_2) {
tmp_mac[0] = mac[5];
tmp_mac[1] = mac[4];
tmp_mac[2] = mac[3];
tmp_mac[3] = efuse[1] >> 16;
efuse_crc = efuse[0] >> 16;
calc_crc = esp_crc8(tmp_mac, 4);
if (efuse_crc != calc_crc)
use_default = 1;
}
}
}
if (use_default) {
mac[0] = 0x18;
mac[1] = 0xFE;
mac[2] = 0x34;
}
return ESP_OK;
}
static const char *BACKUP_MAC_NAMESPACE = "backup_mac";
static const char *BACKUP_MAC_DATA_KEY = "backup_mac_data";
#define MAC_DATA_LEN_WITH_CRC (4*4)
static esp_err_t load_backup_mac_data(uint8_t *mac)
{
esp_err_t err;
nvs_handle handle;
uint32_t efuse[4];
uint8_t efuse_crc = 0;
uint8_t calc_crc = 0;
uint8_t version;
if (mac == NULL) {
ESP_LOGE(TAG, "mac address param is NULL");
return ESP_ERR_INVALID_ARG;
}
err = nvs_open(BACKUP_MAC_NAMESPACE, NVS_READONLY, &handle);
if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
ESP_LOGE(TAG, "%s: NVS has not been initialized. "
"Call nvs_flash_init before starting WiFi/BT.", __func__);
return ESP_ERR_INVALID_MAC;
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return ESP_ERR_INVALID_MAC;
}
size_t length = MAC_DATA_LEN_WITH_CRC;
err = nvs_get_blob(handle, BACKUP_MAC_DATA_KEY, efuse, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get backup mac (0x%x)", __func__, err);
return ESP_ERR_INVALID_MAC;
}
if (length != MAC_DATA_LEN_WITH_CRC) {
ESP_LOGD(TAG, "%s: invalid length of backup mac (%d)", __func__, length);
return ESP_ERR_INVALID_MAC;
}
nvs_close(handle);
mac[3] = efuse[1] >> 8;
mac[4] = efuse[1];
mac[5] = efuse[0] >> 24;
if (efuse[2] & EFUSE_IS_48BITS_MAC) {
uint8_t tmp_mac[4];
mac[0] = efuse[3] >> 16;
mac[1] = efuse[3] >> 8;
mac[2] = efuse[3];
tmp_mac[0] = mac[2];
tmp_mac[1] = mac[1];
tmp_mac[2] = mac[0];
efuse_crc = efuse[2] >> 24;
calc_crc = esp_crc8(tmp_mac, 3);
if (efuse_crc != calc_crc) {
ESP_LOGE(TAG, "High MAC CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
return ESP_ERR_INVALID_MAC;
}
version = (efuse[1] >> EFUSE_VERSION_S) & EFUSE_VERSION_V;
if (version == EFUSE_VERSION_1 || version == EFUSE_VERSION_2) {
tmp_mac[0] = mac[5];
tmp_mac[1] = mac[4];
tmp_mac[2] = mac[3];
tmp_mac[3] = efuse[1] >> 16;
efuse_crc = efuse[0] >> 16;
calc_crc = esp_crc8(tmp_mac, 4);
if (efuse_crc != calc_crc) {
ESP_LOGE(TAG, "CRC8 error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
return ESP_ERR_INVALID_MAC;
}
}
} else {
mac[0] = 0x18;
mac[1] = 0xFE;
mac[2] = 0x34;
}
return ESP_OK;
}
static esp_err_t store_backup_mac_data()
{
esp_err_t err;
nvs_handle handle;
uint32_t efuse[4];
efuse[0] = REG_READ(EFUSE_DATA0_REG);
efuse[1] = REG_READ(EFUSE_DATA1_REG);
efuse[2] = REG_READ(EFUSE_DATA2_REG);
efuse[3] = REG_READ(EFUSE_DATA3_REG);
err = nvs_open(BACKUP_MAC_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}
err = nvs_set_blob(handle, BACKUP_MAC_DATA_KEY, efuse, MAC_DATA_LEN_WITH_CRC);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store backup mac data failed(0x%x)\n", __func__, err);
return err;
}
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store backup mac data failed(0x%x)\n", __func__, err);
}
return err;
}
esp_err_t esp_derive_mac(uint8_t* local_mac, const uint8_t* universal_mac)
{
uint8_t idx;
if (local_mac == NULL || universal_mac == NULL) {
ESP_LOGE(TAG, "mac address param is NULL");
return ESP_ERR_INVALID_ARG;
}
memcpy(local_mac, universal_mac, 6);
for (idx = 0; idx < 64; idx++) {
local_mac[0] = universal_mac[0] | 0x02;
local_mac[0] ^= idx << 2;
if (memcmp(local_mac, universal_mac, 6)) {
break;
}
}
return ESP_OK;
}
esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
{
uint8_t efuse_mac[6];
if (mac == NULL) {
ESP_LOGE(TAG, "mac address param is NULL");
return ESP_ERR_INVALID_ARG;
}
if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_WIFI_SOFTAP) {
ESP_LOGE(TAG, "mac type is incorrect");
return ESP_ERR_INVALID_ARG;
}
if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
if (load_backup_mac_data(efuse_mac) != ESP_OK) {
if (esp_efuse_mac_get_default(efuse_mac) != ESP_OK) {
ESP_LOGE(TAG, "Get mac address error");
abort();
} else {
store_backup_mac_data();
}
}
}
switch (type) {
case ESP_MAC_WIFI_STA:
memcpy(mac, efuse_mac, 6);
break;
case ESP_MAC_WIFI_SOFTAP:
esp_derive_mac(mac, efuse_mac);
break;
default:
ESP_LOGW(TAG, "incorrect mac type");
break;
}
return ESP_OK;
}
/**
* Get IDF version
*/
const char* esp_get_idf_version(void)
{
return IDF_VER;
}
/**
* @brief Fill an esp_chip_info_t structure with information about the ESP8266 chip
*/
static void get_chip_info_esp8266(esp_chip_info_t* out_info)
{
memset(out_info, 0, sizeof(*out_info));
out_info->model = CHIP_ESP8266;
out_info->revision = 1;
out_info->cores = 1;
out_info->features = CHIP_FEATURE_WIFI_BGN;
}
/**
* @brief Fill an esp_chip_info_t structure with information about the chip
*/
void esp_chip_info(esp_chip_info_t* out_info)
{
// Only ESP8266 is supported now, in the future call one of the
// chip-specific functions based on sdkconfig choice
return get_chip_info_esp8266(out_info);
}
/**
* @brief Get the size of available heap.
*/
uint32_t esp_get_free_heap_size(void)
{
return heap_caps_get_free_size(MALLOC_CAP_32BIT);
}
/**
* @brief Get the minimum heap that has ever been available
*/
uint32_t esp_get_minimum_free_heap_size(void)
{
return heap_caps_get_minimum_free_size(MALLOC_CAP_32BIT);
}