Files
2018-04-04 19:46:24 +08:00

664 lines
29 KiB
Python

from __future__ import with_statement, division
import unittest
import os
import time
import shutil
import subprocess
from binascii import hexlify, unhexlify
from hashlib import sha1, sha256, sha512
from .six import b, print_, binary_type
from .keys import SigningKey, VerifyingKey
from .keys import BadSignatureError
from . import util
from .util import sigencode_der, sigencode_strings
from .util import sigdecode_der, sigdecode_strings
from .curves import Curve, UnknownCurveError
from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1
from .ellipticcurve import Point
from . import der
from . import rfc6979
class SubprocessError(Exception):
pass
def run_openssl(cmd):
OPENSSL = "openssl"
p = subprocess.Popen([OPENSSL] + cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
stdout, ignored = p.communicate()
if p.returncode != 0:
raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" %
(OPENSSL, cmd, p.returncode, stdout))
return stdout.decode()
BENCH = False
class ECDSA(unittest.TestCase):
def test_basic(self):
priv = SigningKey.generate()
pub = priv.get_verifying_key()
data = b("blahblah")
sig = priv.sign(data)
self.assertTrue(pub.verify(sig, data))
self.assertRaises(BadSignatureError, pub.verify, sig, data+b("bad"))
pub2 = VerifyingKey.from_string(pub.to_string())
self.assertTrue(pub2.verify(sig, data))
def test_deterministic(self):
data = b("blahblah")
secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16)
priv = SigningKey.from_secret_exponent(secexp, SECP256k1, sha256)
pub = priv.get_verifying_key()
k = rfc6979.generate_k(
SECP256k1.generator.order(), secexp, sha256, sha256(data).digest())
sig1 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig1, data))
sig2 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig2, data))
sig3 = priv.sign_deterministic(data, sha256)
self.assertTrue(pub.verify(sig3, data))
self.assertEqual(sig1, sig2)
self.assertEqual(sig1, sig3)
def test_bad_usage(self):
# sk=SigningKey() is wrong
self.assertRaises(TypeError, SigningKey)
self.assertRaises(TypeError, VerifyingKey)
def test_lengths(self):
default = NIST192p
priv = SigningKey.generate()
pub = priv.get_verifying_key()
self.assertEqual(len(pub.to_string()), default.verifying_key_length)
sig = priv.sign(b("data"))
self.assertEqual(len(sig), default.signature_length)
if BENCH:
print_()
for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p):
start = time.time()
priv = SigningKey.generate(curve=curve)
pub1 = priv.get_verifying_key()
keygen_time = time.time() - start
pub2 = VerifyingKey.from_string(pub1.to_string(), curve)
self.assertEqual(pub1.to_string(), pub2.to_string())
self.assertEqual(len(pub1.to_string()),
curve.verifying_key_length)
start = time.time()
sig = priv.sign(b("data"))
sign_time = time.time() - start
self.assertEqual(len(sig), curve.signature_length)
if BENCH:
start = time.time()
pub1.verify(sig, b("data"))
verify_time = time.time() - start
print_("%s: siglen=%d, keygen=%0.3fs, sign=%0.3f, verify=%0.3f" \
% (curve.name, curve.signature_length,
keygen_time, sign_time, verify_time))
def test_serialize(self):
seed = b("secret")
curve = NIST192p
secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order)
secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order)
self.assertEqual(secexp1, secexp2)
priv1 = SigningKey.from_secret_exponent(secexp1, curve)
priv2 = SigningKey.from_secret_exponent(secexp2, curve)
self.assertEqual(hexlify(priv1.to_string()),
hexlify(priv2.to_string()))
self.assertEqual(priv1.to_pem(), priv2.to_pem())
pub1 = priv1.get_verifying_key()
pub2 = priv2.get_verifying_key()
data = b("data")
sig1 = priv1.sign(data)
sig2 = priv2.sign(data)
self.assertTrue(pub1.verify(sig1, data))
self.assertTrue(pub2.verify(sig1, data))
self.assertTrue(pub1.verify(sig2, data))
self.assertTrue(pub2.verify(sig2, data))
self.assertEqual(hexlify(pub1.to_string()),
hexlify(pub2.to_string()))
def test_nonrandom(self):
s = b("all the entropy in the entire world, compressed into one line")
def not_much_entropy(numbytes):
return s[:numbytes]
# we control the entropy source, these two keys should be identical:
priv1 = SigningKey.generate(entropy=not_much_entropy)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(hexlify(priv1.get_verifying_key().to_string()),
hexlify(priv2.get_verifying_key().to_string()))
# likewise, signatures should be identical. Obviously you'd never
# want to do this with keys you care about, because the secrecy of
# the private key depends upon using different random numbers for
# each signature
sig1 = priv1.sign(b("data"), entropy=not_much_entropy)
sig2 = priv2.sign(b("data"), entropy=not_much_entropy)
self.assertEqual(hexlify(sig1), hexlify(sig2))
def assertTruePrivkeysEqual(self, priv1, priv2):
self.assertEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
self.assertEqual(priv1.privkey.public_key.generator,
priv2.privkey.public_key.generator)
def failIfPrivkeysEqual(self, priv1, priv2):
self.failIfEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
def test_privkey_creation(self):
s = b("all the entropy in the entire world, compressed into one line")
def not_much_entropy(numbytes):
return s[:numbytes]
priv1 = SigningKey.generate()
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv1 = SigningKey.generate(curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
priv1 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv2.baselen, NIST192p.baselen)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=3)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.from_secret_exponent(secexp=3)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
def test_privkey_strings(self):
priv1 = SigningKey.generate()
s1 = priv1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.baselen)
priv2 = SigningKey.from_string(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----")))
self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----")))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.generate(curve=NIST256p)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----")))
self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----")))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
def assertTruePubkeysEqual(self, pub1, pub2):
self.assertEqual(pub1.pubkey.point, pub2.pubkey.point)
self.assertEqual(pub1.pubkey.generator, pub2.pubkey.generator)
self.assertEqual(pub1.curve, pub2.curve)
def test_pubkey_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1)
self.assertTruePubkeysEqual(pub1, pub2)
priv1 = SigningKey.generate(curve=NIST256p)
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST256p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1, curve=NIST256p)
self.assertTruePubkeysEqual(pub1, pub2)
pub1_der = pub1.to_der()
self.assertEqual(type(pub1_der), binary_type)
pub2 = VerifyingKey.from_der(pub1_der)
self.assertTruePubkeysEqual(pub1, pub2)
self.assertRaises(der.UnexpectedDER,
VerifyingKey.from_der, pub1_der+b("junk"))
badpub = VerifyingKey.from_der(pub1_der)
class FakeGenerator:
def order(self): return 123456789
badcurve = Curve("unknown", None, FakeGenerator(), (1,2,3,4,5,6), None)
badpub.curve = badcurve
badder = badpub.to_der()
self.assertRaises(UnknownCurveError, VerifyingKey.from_der, badder)
pem = pub1.to_pem()
self.assertEqual(type(pem), binary_type)
self.assertTrue(pem.startswith(b("-----BEGIN PUBLIC KEY-----")), pem)
self.assertTrue(pem.strip().endswith(b("-----END PUBLIC KEY-----")), pem)
pub2 = VerifyingKey.from_pem(pem)
self.assertTruePubkeysEqual(pub1, pub2)
def test_signature_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
data = b("data")
sig = priv1.sign(data)
self.assertEqual(type(sig), binary_type)
self.assertEqual(len(sig), NIST192p.signature_length)
self.assertTrue(pub1.verify(sig, data))
sig = priv1.sign(data, sigencode=sigencode_strings)
self.assertEqual(type(sig), tuple)
self.assertEqual(len(sig), 2)
self.assertEqual(type(sig[0]), binary_type)
self.assertEqual(type(sig[1]), binary_type)
self.assertEqual(len(sig[0]), NIST192p.baselen)
self.assertEqual(len(sig[1]), NIST192p.baselen)
self.assertTrue(pub1.verify(sig, data, sigdecode=sigdecode_strings))
sig_der = priv1.sign(data, sigencode=sigencode_der)
self.assertEqual(type(sig_der), binary_type)
self.assertTrue(pub1.verify(sig_der, data, sigdecode=sigdecode_der))
def test_hashfunc(self):
sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256)
data = b("security level is 128 bits")
sig = sk.sign(data)
vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.assertTrue(vk.verify(sig, data))
sk2 = SigningKey.generate(curve=NIST256p)
sig2 = sk2.sign(data, hashfunc=sha256)
vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.assertTrue(vk2.verify(sig2, data))
vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p)
self.assertTrue(vk3.verify(sig, data, hashfunc=sha256))
class OpenSSL(unittest.TestCase):
# test interoperability with OpenSSL tools. Note that openssl's ECDSA
# sign/verify arguments changed between 0.9.8 and 1.0.0: the early
# versions require "-ecdsa-with-SHA1", the later versions want just
# "-SHA1" (or to leave out that argument entirely, which means the
# signature will use some default digest algorithm, probably determined
# by the key, probably always SHA1).
#
# openssl ecparam -name secp224r1 -genkey -out privkey.pem
# openssl ec -in privkey.pem -text -noout # get the priv/pub keys
# openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt
# openssl asn1parse -in data.sig -inform DER
# data.sig is 64 bytes, probably 56b plus ASN1 overhead
# openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $?
# openssl ec -in privkey.pem -pubout -out pubkey.pem
# openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der
def get_openssl_messagedigest_arg(self):
v = run_openssl("version")
# e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010",
# or "OpenSSL 0.9.8o 01 Jun 2010"
vs = v.split()[1].split(".")
if vs >= ["1","0","0"]:
return "-SHA1"
else:
return "-ecdsa-with-SHA1"
# sk: 1:OpenSSL->python 2:python->OpenSSL
# vk: 3:OpenSSL->python 4:python->OpenSSL
# sig: 5:OpenSSL->python 6:python->OpenSSL
def test_from_openssl_nist192p(self):
return self.do_test_from_openssl(NIST192p)
def test_from_openssl_nist224p(self):
return self.do_test_from_openssl(NIST224p)
def test_from_openssl_nist256p(self):
return self.do_test_from_openssl(NIST256p)
def test_from_openssl_nist384p(self):
return self.do_test_from_openssl(NIST384p)
def test_from_openssl_nist521p(self):
return self.do_test_from_openssl(NIST521p)
def test_from_openssl_secp256k1(self):
return self.do_test_from_openssl(SECP256k1)
def do_test_from_openssl(self, curve):
curvename = curve.openssl_name
assert curvename
# OpenSSL: create sk, vk, sign.
# Python: read vk(3), checksig(5), read sk(1), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename)
run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem")
data = b("data")
with open("t/data.txt","wb") as e: e.write(data)
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg)
with open("t/pubkey.pem","rb") as e: pubkey_pem = e.read()
vk = VerifyingKey.from_pem(pubkey_pem) # 3
with open("t/data.sig","rb") as e: sig_der = e.read()
self.assertTrue(vk.verify(sig_der, data, # 5
hashfunc=sha1, sigdecode=sigdecode_der))
with open("t/privkey.pem") as e: fp = e.read()
sk = SigningKey.from_pem(fp) # 1
sig = sk.sign(data)
self.assertTrue(vk.verify(sig, data))
def test_to_openssl_nist192p(self):
self.do_test_to_openssl(NIST192p)
def test_to_openssl_nist224p(self):
self.do_test_to_openssl(NIST224p)
def test_to_openssl_nist256p(self):
self.do_test_to_openssl(NIST256p)
def test_to_openssl_nist384p(self):
self.do_test_to_openssl(NIST384p)
def test_to_openssl_nist521p(self):
self.do_test_to_openssl(NIST521p)
def test_to_openssl_secp256k1(self):
self.do_test_to_openssl(SECP256k1)
def do_test_to_openssl(self, curve):
curvename = curve.openssl_name
assert curvename
# Python: create sk, vk, sign.
# OpenSSL: read vk(4), checksig(6), read sk(2), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
sk = SigningKey.generate(curve=curve)
vk = sk.get_verifying_key()
data = b("data")
with open("t/pubkey.der","wb") as e: e.write(vk.to_der()) # 4
with open("t/pubkey.pem","wb") as e: e.write(vk.to_pem()) # 4
sig_der = sk.sign(data, hashfunc=sha1, sigencode=sigencode_der)
with open("t/data.sig","wb") as e: e.write(sig_der) # 6
with open("t/data.txt","wb") as e: e.write(data)
with open("t/baddata.txt","wb") as e: e.write(data+b("corrupt"))
self.assertRaises(SubprocessError, run_openssl,
"dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg)
with open("t/privkey.pem","wb") as e: e.write(sk.to_pem()) # 2
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg)
class DER(unittest.TestCase):
def test_oids(self):
oid_ecPublicKey = der.encode_oid(1, 2, 840, 10045, 2, 1)
self.assertEqual(hexlify(oid_ecPublicKey), b("06072a8648ce3d0201"))
self.assertEqual(hexlify(NIST224p.encoded_oid), b("06052b81040021"))
self.assertEqual(hexlify(NIST256p.encoded_oid),
b("06082a8648ce3d030107"))
x = oid_ecPublicKey + b("more")
x1, rest = der.remove_object(x)
self.assertEqual(x1, (1, 2, 840, 10045, 2, 1))
self.assertEqual(rest, b("more"))
def test_integer(self):
self.assertEqual(der.encode_integer(0), b("\x02\x01\x00"))
self.assertEqual(der.encode_integer(1), b("\x02\x01\x01"))
self.assertEqual(der.encode_integer(127), b("\x02\x01\x7f"))
self.assertEqual(der.encode_integer(128), b("\x02\x02\x00\x80"))
self.assertEqual(der.encode_integer(256), b("\x02\x02\x01\x00"))
#self.assertEqual(der.encode_integer(-1), b("\x02\x01\xff"))
def s(n): return der.remove_integer(der.encode_integer(n) + b("junk"))
self.assertEqual(s(0), (0, b("junk")))
self.assertEqual(s(1), (1, b("junk")))
self.assertEqual(s(127), (127, b("junk")))
self.assertEqual(s(128), (128, b("junk")))
self.assertEqual(s(256), (256, b("junk")))
self.assertEqual(s(1234567890123456789012345678901234567890),
(1234567890123456789012345678901234567890,b("junk")))
def test_number(self):
self.assertEqual(der.encode_number(0), b("\x00"))
self.assertEqual(der.encode_number(127), b("\x7f"))
self.assertEqual(der.encode_number(128), b("\x81\x00"))
self.assertEqual(der.encode_number(3*128+7), b("\x83\x07"))
#self.assertEqual(der.read_number("\x81\x9b"+"more"), (155, 2))
#self.assertEqual(der.encode_number(155), b("\x81\x9b"))
for n in (0, 1, 2, 127, 128, 3*128+7, 840, 10045): #, 155):
x = der.encode_number(n) + b("more")
n1, llen = der.read_number(x)
self.assertEqual(n1, n)
self.assertEqual(x[llen:], b("more"))
def test_length(self):
self.assertEqual(der.encode_length(0), b("\x00"))
self.assertEqual(der.encode_length(127), b("\x7f"))
self.assertEqual(der.encode_length(128), b("\x81\x80"))
self.assertEqual(der.encode_length(255), b("\x81\xff"))
self.assertEqual(der.encode_length(256), b("\x82\x01\x00"))
self.assertEqual(der.encode_length(3*256+7), b("\x82\x03\x07"))
self.assertEqual(der.read_length(b("\x81\x9b")+b("more")), (155, 2))
self.assertEqual(der.encode_length(155), b("\x81\x9b"))
for n in (0, 1, 2, 127, 128, 255, 256, 3*256+7, 155):
x = der.encode_length(n) + b("more")
n1, llen = der.read_length(x)
self.assertEqual(n1, n)
self.assertEqual(x[llen:], b("more"))
def test_sequence(self):
x = der.encode_sequence(b("ABC"), b("DEF")) + b("GHI")
self.assertEqual(x, b("\x30\x06ABCDEFGHI"))
x1, rest = der.remove_sequence(x)
self.assertEqual(x1, b("ABCDEF"))
self.assertEqual(rest, b("GHI"))
def test_constructed(self):
x = der.encode_constructed(0, NIST224p.encoded_oid)
self.assertEqual(hexlify(x), b("a007") + b("06052b81040021"))
x = der.encode_constructed(1, unhexlify(b("0102030a0b0c")))
self.assertEqual(hexlify(x), b("a106") + b("0102030a0b0c"))
class Util(unittest.TestCase):
def test_trytryagain(self):
tta = util.randrange_from_seed__trytryagain
for i in range(1000):
seed = "seed-%d" % i
for order in (2**8-2, 2**8-1, 2**8, 2**8+1, 2**8+2,
2**16-1, 2**16+1):
n = tta(seed, order)
self.assertTrue(1 <= n < order, (1, n, order))
# this trytryagain *does* provide long-term stability
self.assertEqual(("%x"%(tta("seed", NIST224p.order))).encode(),
b("6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc"))
def test_randrange(self):
# util.randrange does not provide long-term stability: we might
# change the algorithm in the future.
for i in range(1000):
entropy = util.PRNG("seed-%d" % i)
for order in (2**8-2, 2**8-1, 2**8,
2**16-1, 2**16+1,
):
# that oddball 2**16+1 takes half our runtime
n = util.randrange(order, entropy=entropy)
self.assertTrue(1 <= n < order, (1, n, order))
def OFF_test_prove_uniformity(self):
order = 2**8-2
counts = dict([(i, 0) for i in range(1, order)])
assert 0 not in counts
assert order not in counts
for i in range(1000000):
seed = "seed-%d" % i
n = util.randrange_from_seed__trytryagain(seed, order)
counts[n] += 1
# this technique should use the full range
self.assertTrue(counts[order-1])
for i in range(1, order):
print_("%3d: %s" % (i, "*"*(counts[i]//100)))
class RFC6979(unittest.TestCase):
# https://tools.ietf.org/html/rfc6979#appendix-A.1
def _do(self, generator, secexp, hsh, hash_func, expected):
actual = rfc6979.generate_k(generator.order(), secexp, hash_func, hsh)
self.assertEqual(expected, actual)
def test_SECP256k1(self):
'''RFC doesn't contain test vectors for SECP256k1 used in bitcoin.
This vector has been computed by Golang reference implementation instead.'''
self._do(
generator = SECP256k1.generator,
secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("8fa1f95d514760e498f28957b824ee6ec39ed64826ff4fecc2b5739ec45b91cd", 16))
def test_SECP256k1_2(self):
self._do(
generator=SECP256k1.generator,
secexp=int("cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50", 16),
hsh=sha256(b("sample")).digest(),
hash_func=sha256,
expected=int("2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3", 16))
def test_SECP256k1_3(self):
self._do(
generator=SECP256k1.generator,
secexp=0x1,
hsh=sha256(b("Satoshi Nakamoto")).digest(),
hash_func=sha256,
expected=0x8F8A276C19F4149656B280621E358CCE24F5F52542772691EE69063B74F15D15)
def test_SECP256k1_4(self):
self._do(
generator=SECP256k1.generator,
secexp=0x1,
hsh=sha256(b("All those moments will be lost in time, like tears in rain. Time to die...")).digest(),
hash_func=sha256,
expected=0x38AA22D72376B4DBC472E06C3BA403EE0A394DA63FC58D88686C611ABA98D6B3)
def test_SECP256k1_5(self):
self._do(
generator=SECP256k1.generator,
secexp=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140,
hsh=sha256(b("Satoshi Nakamoto")).digest(),
hash_func=sha256,
expected=0x33A19B60E25FB6F4435AF53A3D42D493644827367E6453928554F43E49AA6F90)
def test_SECP256k1_6(self):
self._do(
generator=SECP256k1.generator,
secexp=0xf8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181,
hsh=sha256(b("Alan Turing")).digest(),
hash_func=sha256,
expected=0x525A82B70E67874398067543FD84C83D30C175FDC45FDEEE082FE13B1D7CFDF1)
def test_1(self):
# Basic example of the RFC, it also tests 'try-try-again' from Step H of rfc6979
self._do(
generator = Point(None, 0, 0, int("4000000000000000000020108A2E0CC0D99F8A5EF", 16)),
secexp = int("09A4D6792295A7F730FC3F2B49CBC0F62E862272F", 16),
hsh = unhexlify(b("AF2BDBE1AA9B6EC1E2ADE1D694F41FC71A831D0268E9891562113D8A62ADD1BF")),
hash_func = sha256,
expected = int("23AF4074C90A02B3FE61D286D5C87F425E6BDD81B", 16))
def test_2(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha1(b("sample")).digest(),
hash_func = sha1,
expected = int("37D7CA00D2C7B0E5E412AC03BD44BA837FDD5B28CD3B0021", 16))
def test_3(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("32B1B6D7D42A05CB449065727A84804FB1A3E34D8F261496", 16))
def test_4(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha512(b("sample")).digest(),
hash_func = sha512,
expected = int("A2AC7AB055E4F20692D49209544C203A7D1F2C0BFBC75DB1", 16))
def test_5(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha1(b("test")).digest(),
hash_func = sha1,
expected = int("D9CF9C3D3297D3260773A1DA7418DB5537AB8DD93DE7FA25", 16))
def test_6(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha256(b("test")).digest(),
hash_func = sha256,
expected = int("5C4CE89CF56D9E7C77C8585339B006B97B5F0680B4306C6C", 16))
def test_7(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha512(b("test")).digest(),
hash_func = sha512,
expected = int("0758753A5254759C7CFBAD2E2D9B0792EEE44136C9480527", 16))
def test_8(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha1(b("sample")).digest(),
hash_func = sha1,
expected = int("089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9", 16))
def test_9(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0", 16))
def test_10(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha512(b("test")).digest(),
hash_func = sha512,
expected = int("16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D", 16))
def __main__():
unittest.main()
if __name__ == "__main__":
__main__()