Files

295 lines
7.6 KiB
C

// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <sys/param.h>
#include "esp_timer.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_sleep.h"
#include "FreeRTOS.h"
#include "freertos/task.h"
#include "driver/soc.h"
#include "esp8266/timer_struct.h"
#include "esp8266/rom_functions.h"
#include "driver/rtc.h"
#include "rom/uart.h"
#include "internal/phy_init_data.h"
#define FRC2_LOAD (0x60000620)
#define FRC2_COUNT (0x60000624)
#define FRC2_CTL (0x60000628)
#define FRC2_ALARM (0x60000630)
#define FRC2_CNTL_ENABLE BIT7
#define FRC2_TICKS_PER_US (5)
#define FRC2_TICKS_MAX (UINT32_MAX / 4)
#define SLEEP_MIN_TIME (1000)
#define SLEEP_PROC_TIME (4450)
#define WAKEUP_EARLY_TICKS (264) // PLL and STAL wait ticks
#define MIN_SLEEP_US (SLEEP_MIN_TIME + SLEEP_PROC_TIME)
#define TAG "esp8266_pm"
typedef struct pm_soc_clk {
uint32_t ccount;
uint32_t frc2_enable;
uint32_t frc2_cnt;
uint32_t wdev_cnt;
} pm_soc_clk_t;
static uint16_t s_lock_cnt = 1;
static esp_sleep_mode_t s_sleep_mode = ESP_CPU_WAIT;
static uint32_t s_sleep_wakup_triggers;
static uint32_t s_sleep_duration;
static inline uint32_t save_local_wdev(void)
{
extern uint32_t WDEV_INTEREST_EVENT;
uint32_t reg = WDEV_INTEREST_EVENT;
REG_WRITE(INT_ENA_WDEV, WDEV_TSF0_REACH_INT);
return reg;
}
static inline void restore_local_wdev(uint32_t reg)
{
REG_WRITE(INT_ENA_WDEV, reg);
}
static inline void save_soc_clk(pm_soc_clk_t *clk)
{
clk->ccount = soc_get_ccount();
clk->frc2_enable = REG_READ(FRC2_CTL) & FRC2_CNTL_ENABLE;
if (clk->frc2_enable)
clk->frc2_cnt = REG_READ(FRC2_COUNT);
clk->wdev_cnt = REG_READ(WDEV_COUNT_REG);
}
static inline uint32_t min_sleep_us(pm_soc_clk_t *clk)
{
const uint32_t os_idle_ticks = prvGetExpectedIdleTime();
const int32_t os_sleep_us = ((int32_t)soc_get_ccompare() - (int32_t)clk->ccount) / g_esp_ticks_per_us +
(os_idle_ticks ? os_idle_ticks - 1 : 0) * portTICK_RATE_MS * 1000;
const uint32_t ccompare_sleep_us = os_sleep_us > 0 ? os_sleep_us : 0;
if (clk->frc2_enable) {
const uint32_t frc2_sleep_ticks = REG_READ(FRC2_ALARM) - clk->frc2_cnt;
const uint32_t frc2_sleep_us = frc2_sleep_ticks < FRC2_TICKS_MAX ? frc2_sleep_ticks / FRC2_TICKS_PER_US : 0;
return MIN(ccompare_sleep_us, frc2_sleep_us);
} else {
return ccompare_sleep_us;
}
}
static inline void update_soc_clk(pm_soc_clk_t *clk, uint32_t us)
{
extern uint32_t WdevTimOffSet;
const uint32_t os_ccount = us * g_esp_ticks_per_us + clk->ccount;
if (os_ccount >= _xt_tick_divisor)
soc_set_ccompare(os_ccount + 32);
soc_set_ccount(os_ccount);
if (clk->frc2_enable) {
const uint32_t frc2_cnt = us * FRC2_TICKS_PER_US + clk->frc2_cnt - 1;
REG_WRITE(FRC2_LOAD, frc2_cnt);
}
uint32_t wdev_us;
uint32_t wdev_cnt = REG_READ(WDEV_COUNT_REG);
if (clk->wdev_cnt < wdev_cnt)
wdev_us = us - (wdev_cnt - clk->wdev_cnt);
else
wdev_us = us - (UINT32_MAX - clk->wdev_cnt + wdev_cnt);
WdevTimOffSet += wdev_us;
}
static int cpu_is_wait_mode(void)
{
return (s_sleep_mode == ESP_CPU_WAIT) || s_lock_cnt;
}
void esp_wifi_hw_open(void)
{
phy_open_rf();
}
void esp_wifi_hw_close(void)
{
phy_close_rf();
}
rtc_cpu_freq_t rtc_clk_cpu_freq_get(void)
{
rtc_cpu_freq_t freq;
uint32_t reg = REG_READ(DPORT_CTL_REG);
if (reg & DPORT_CTL_DOUBLE_CLK)
freq = RTC_CPU_FREQ_160M;
else
freq = RTC_CPU_FREQ_80M;
return freq;
}
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
{
if (RTC_CPU_FREQ_80M == cpu_freq)
REG_CLR_BIT(DPORT_CTL_REG, DPORT_CTL_DOUBLE_CLK);
else
REG_SET_BIT(DPORT_CTL_REG, DPORT_CTL_DOUBLE_CLK);
}
esp_err_t esp_sleep_enable_timer_wakeup(uint32_t time_in_us)
{
if (time_in_us <= MIN_SLEEP_US)
return ESP_ERR_INVALID_ARG;
s_sleep_duration = time_in_us - SLEEP_PROC_TIME;
s_sleep_wakup_triggers |= RTC_TIMER_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_enable_gpio_wakeup(void)
{
s_sleep_wakup_triggers |= RTC_GPIO_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
{
// For most of sources it is enough to set trigger mask in local
// configuration structure. The actual RTC wake up options
// will be updated by esp_sleep_start().
if (source == ESP_SLEEP_WAKEUP_ALL) {
s_sleep_wakup_triggers = 0;
} else if (ESP_SLEEP_WAKEUP_TIMER == source) {
s_sleep_wakup_triggers &= ~RTC_TIMER_TRIG_EN;
s_sleep_duration = 0;
} else if (ESP_SLEEP_WAKEUP_GPIO == source) {
s_sleep_wakup_triggers &= ~RTC_GPIO_TRIG_EN;
} else {
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
esp_err_t esp_light_sleep_start(void)
{
uint32_t period = pm_rtc_clock_cali_proc();
const uint32_t sleep_rtc_ticks = pm_usec2rtc(s_sleep_duration, period);
const rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
if (sleep_rtc_ticks > WAKEUP_EARLY_TICKS + 1) {
rtc_lightsleep_init();
pm_set_sleep_cycles(sleep_rtc_ticks - WAKEUP_EARLY_TICKS);
rtc_light_sleep_start(s_sleep_wakup_triggers, 0);
rtc_wakeup_init();
rtc_clk_cpu_freq_set(cpu_freq);
return ESP_OK;
}
return ESP_ERR_INVALID_STATE;
}
void esp_sleep_lock(void)
{
const esp_irqflag_t irqflag = soc_save_local_irq();
s_lock_cnt++;
soc_restore_local_irq(irqflag);
}
void esp_sleep_unlock(void)
{
const esp_irqflag_t irqflag = soc_save_local_irq();
s_lock_cnt--;
soc_restore_local_irq(irqflag);
}
void esp_sleep_set_mode(esp_sleep_mode_t mode)
{
s_sleep_mode = mode;
}
void esp_sleep_start(void)
{
if (cpu_is_wait_mode()) {
soc_wait_int();
return ;
}
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
int cpu_wait = 1;
pm_soc_clk_t clk;
const esp_irqflag_t irqflag = soc_save_local_irq();
const uint32_t wdevflag = save_local_wdev();
if (cpu_is_wait_mode()) {
cpu_wait = 0;
goto exit;
}
save_soc_clk(&clk);
const uint32_t sleep_us = min_sleep_us(&clk);
if (sleep_us > MIN_SLEEP_US) {
uint32_t period = pm_rtc_clock_cali_proc();
const uint32_t sleep_rtc_ticks = pm_usec2rtc(sleep_us - SLEEP_PROC_TIME, period);
if (sleep_rtc_ticks > WAKEUP_EARLY_TICKS + 1) {
const rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
rtc_lightsleep_init();
pm_set_sleep_cycles(sleep_rtc_ticks - WAKEUP_EARLY_TICKS);
rtc_light_sleep_start(s_sleep_wakup_triggers | RTC_TIMER_TRIG_EN, 0);
rtc_wakeup_init();
rtc_clk_cpu_freq_set(cpu_freq);
update_soc_clk(&clk, sleep_us);
cpu_wait = 0;
}
}
exit:
restore_local_wdev(wdevflag);
soc_restore_local_irq(irqflag);
if (cpu_wait)
soc_wait_int();
}