// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp8266/eagle_soc.h" #include "esp8266/pin_mux_register.h" #include "esp8266/ets_sys.h" #include "FreeRTOS.h" #include "gpio.h" void gpio_config(GPIO_ConfigTypeDef* pGPIOConfig) { uint16_t gpio_pin_mask = pGPIOConfig->GPIO_Pin; uint32_t io_reg; uint8_t io_num = 0; uint32_t pin_reg; if (pGPIOConfig->GPIO_Mode == GPIO_Mode_Input) { GPIO_AS_INPUT(gpio_pin_mask); } else if (pGPIOConfig->GPIO_Mode == GPIO_Mode_Output) { GPIO_AS_OUTPUT(gpio_pin_mask); } do { if ((gpio_pin_mask >> io_num) & 0x1) { io_reg = GPIO_PIN_REG(io_num); if ((0x1 << io_num) & (GPIO_Pin_0 | GPIO_Pin_2 | GPIO_Pin_4 | GPIO_Pin_5)) { PIN_FUNC_SELECT(io_reg, 0); } else { PIN_FUNC_SELECT(io_reg, 3); } if (pGPIOConfig->GPIO_Pullup) { PIN_PULLUP_EN(io_reg); } else { PIN_PULLUP_DIS(io_reg); } if (pGPIOConfig->GPIO_Mode == GPIO_Mode_Out_OD) { portENTER_CRITICAL(); pin_reg = GPIO_REG_READ(GPIO_PIN_ADDR(io_num)); pin_reg &= (~GPIO_PIN_DRIVER_MASK); pin_reg |= (GPIO_PAD_DRIVER_ENABLE << GPIO_PIN_DRIVER_LSB); GPIO_REG_WRITE(GPIO_PIN_ADDR(io_num), pin_reg); portEXIT_CRITICAL(); } else if (pGPIOConfig->GPIO_Mode == GPIO_Mode_Sigma_Delta) { portENTER_CRITICAL(); pin_reg = GPIO_REG_READ(GPIO_PIN_ADDR(io_num)); pin_reg &= (~GPIO_PIN_SOURCE_MASK); pin_reg |= (0x1 << GPIO_PIN_SOURCE_LSB); GPIO_REG_WRITE(GPIO_PIN_ADDR(io_num), pin_reg); GPIO_REG_WRITE(GPIO_SIGMA_DELTA_ADDRESS, SIGMA_DELTA_ENABLE); portEXIT_CRITICAL(); } gpio_pin_intr_state_set(io_num, pGPIOConfig->GPIO_IntrType); } io_num++; } while (io_num < 16); } /* * Change GPIO pin output by setting, clearing, or disabling pins. * In general, it is expected that a bit will be set in at most one * of these masks. If a bit is clear in all masks, the output state * remains unchanged. * * There is no particular ordering guaranteed; so if the order of * writes is significant, calling code should divide a single call * into multiple calls. */ void gpio_output_conf(uint32_t set_mask, uint32_t clear_mask, uint32_t enable_mask, uint32_t disable_mask) { GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, set_mask); GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, clear_mask); GPIO_REG_WRITE(GPIO_ENABLE_W1TS_ADDRESS, enable_mask); GPIO_REG_WRITE(GPIO_ENABLE_W1TC_ADDRESS, disable_mask); } /* * Sample the value of GPIO input pins and returns a bitmask. */ uint32_t gpio_input_get(void) { return GPIO_REG_READ(GPIO_IN_ADDRESS); } /* * Register an application-specific interrupt handler for GPIO pin * interrupts. Once the interrupt handler is called, it will not * be called again until after a call to gpio_intr_ack. Any GPIO * interrupts that occur during the interim are masked. * * The application-specific handler is called with a mask of * pending GPIO interrupts. After processing pin interrupts, the * application-specific handler may wish to use gpio_intr_pending * to check for any additional pending interrupts before it returns. */ void gpio_intr_handler_register(void* fn, void* arg) { _xt_isr_attach(ETS_GPIO_INUM, fn, arg); } /* only highlevel and lowlevel intr can use for wakeup */ void gpio_pin_wakeup_enable(uint32_t i, GPIO_INT_TYPE intr_state) { uint32_t pin_reg; if ((intr_state == GPIO_PIN_INTR_LOLEVEL) || (intr_state == GPIO_PIN_INTR_HILEVEL)) { portENTER_CRITICAL(); pin_reg = GPIO_REG_READ(GPIO_PIN_ADDR(i)); pin_reg &= (~GPIO_PIN_INT_TYPE_MASK); pin_reg |= (intr_state << GPIO_PIN_INT_TYPE_LSB); pin_reg |= GPIO_PIN_WAKEUP_ENABLE_SET(GPIO_WAKEUP_ENABLE); GPIO_REG_WRITE(GPIO_PIN_ADDR(i), pin_reg); portEXIT_CRITICAL(); } } void gpio_pin_wakeup_disable(void) { uint8_t i; uint32_t pin_reg; for (i = 0; i < GPIO_PIN_COUNT; i++) { pin_reg = GPIO_REG_READ(GPIO_PIN_ADDR(i)); if (pin_reg & GPIO_PIN_WAKEUP_ENABLE_MASK) { pin_reg &= (~GPIO_PIN_INT_TYPE_MASK); pin_reg |= (GPIO_PIN_INTR_DISABLE << GPIO_PIN_INT_TYPE_LSB); pin_reg &= ~(GPIO_PIN_WAKEUP_ENABLE_SET(GPIO_WAKEUP_ENABLE)); GPIO_REG_WRITE(GPIO_PIN_ADDR(i), pin_reg); } } } void gpio_pin_intr_state_set(uint32_t i, GPIO_INT_TYPE intr_state) { uint32_t pin_reg; portENTER_CRITICAL(); pin_reg = GPIO_REG_READ(GPIO_PIN_ADDR(i)); pin_reg &= (~GPIO_PIN_INT_TYPE_MASK); pin_reg |= (intr_state << GPIO_PIN_INT_TYPE_LSB); GPIO_REG_WRITE(GPIO_PIN_ADDR(i), pin_reg); portEXIT_CRITICAL(); } void gpio16_output_conf(void) { WRITE_PERI_REG(PAD_XPD_DCDC_CONF, (READ_PERI_REG(PAD_XPD_DCDC_CONF) & 0xffffffbc) | (uint32_t)0x1); // mux configuration for XPD_DCDC to output rtc_gpio0 WRITE_PERI_REG(RTC_GPIO_CONF, (READ_PERI_REG(RTC_GPIO_CONF) & (uint32_t)0xfffffffe) | (uint32_t)0x0); //mux configuration for out enable WRITE_PERI_REG(RTC_GPIO_ENABLE, (READ_PERI_REG(RTC_GPIO_ENABLE) & (uint32_t)0xfffffffe) | (uint32_t)0x1); //out enable } void gpio16_output_set(uint8_t value) { WRITE_PERI_REG(RTC_GPIO_OUT, (READ_PERI_REG(RTC_GPIO_OUT) & (uint32_t)0xfffffffe) | (uint32_t)(value & 1)); } void gpio16_input_conf(void) { WRITE_PERI_REG(PAD_XPD_DCDC_CONF, (READ_PERI_REG(PAD_XPD_DCDC_CONF) & 0xffffffbc) | (uint32_t)0x1); // mux configuration for XPD_DCDC and rtc_gpio0 connection WRITE_PERI_REG(RTC_GPIO_CONF, (READ_PERI_REG(RTC_GPIO_CONF) & (uint32_t)0xfffffffe) | (uint32_t)0x0); //mux configuration for out enable WRITE_PERI_REG(RTC_GPIO_ENABLE, READ_PERI_REG(RTC_GPIO_ENABLE) & (uint32_t)0xfffffffe); //out disable } uint8_t gpio16_input_get(void) { return (uint8_t)(READ_PERI_REG(RTC_GPIO_IN_DATA) & 1); }