/* * FreeRTOS Kernel V10.0.1 * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. * Additions Copyright 2018 Espressif Systems (Shanghai) PTE LTD * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * http://www.FreeRTOS.org * http://aws.amazon.com/freertos * * 1 tab == 4 spaces! */ /* Scheduler includes. */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/xtensa_rtos.h" #include "esp_attr.h" #include "esp_libc.h" #include "esp_task_wdt.h" #include "esp_sleep.h" #include "esp8266/eagle_soc.h" #include "rom/ets_sys.h" #include "esp8266/rom_functions.h" #include "driver/soc.h" #define SET_STKREG(r,v) sp[(r) >> 2] = (uint32_t)(v) #define PORT_ASSERT(x) do { if (!(x)) {ets_printf("%s %u\n", "rtos_port", __LINE__); while(1){}; }} while (0) extern uint8_t NMIIrqIsOn; static int SWReq = 0; uint32_t cpu_sr; uint32_t _xt_tick_divisor; /* Each task maintains its own interrupt status in the critical nesting variable. */ static uint32_t uxCriticalNesting = 0; uint32_t g_esp_boot_ccount; uint64_t g_esp_os_ticks; uint64_t g_esp_os_us; uint64_t g_esp_os_cpu_clk; void vPortEnterCritical(void); void vPortExitCritical(void); uint8_t *__cpu_init_stk(uint8_t *stack_top, void (*_entry)(void *), void *param, void (*_exit)(void)) { uint32_t *sp, *tp, *stk = (uint32_t *)stack_top; /* Create interrupt stack frame aligned to 16 byte boundary */ sp = (uint32_t *)(((INT32U)(stk + 1) - XT_CP_SIZE - XT_STK_FRMSZ) & ~0xf); /* Clear the entire frame (do not use memset() because we don't depend on C library) */ for (tp = sp; tp <= stk; ++tp) { *tp = 0; } /* Explicitly initialize certain saved registers */ SET_STKREG(XT_STK_PC, _entry); /* task entrypoint */ SET_STKREG(XT_STK_A0, _exit); /* to terminate GDB backtrace */ SET_STKREG(XT_STK_A1, (INT32U)sp + XT_STK_FRMSZ); /* physical top of stack frame */ SET_STKREG(XT_STK_A2, param); /* parameters */ SET_STKREG(XT_STK_EXIT, _xt_user_exit); /* user exception exit dispatcher */ /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */ SET_STKREG(XT_STK_PS, PS_UM | PS_EXCM); return (uint8_t *)sp; } #ifndef DISABLE_FREERTOS /* * See header file for description. */ StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, pdTASK_CODE pxCode, void *pvParameters) { return (StackType_t *)__cpu_init_stk((uint8_t *)pxTopOfStack, pxCode, pvParameters, NULL); } #endif void IRAM_ATTR PendSV(int req) { if (req == 1) { vPortEnterCritical(); SWReq = 1; xthal_set_intset(1 << ETS_SOFT_INUM); vPortExitCritical(); } else if (req == 2) { xthal_set_intset(1 << ETS_SOFT_INUM); } } void TASK_SW_ATTR SoftIsrHdl(void* arg) { extern int MacIsrSigPostDefHdl(void); if (MacIsrSigPostDefHdl() || (SWReq == 1)) { vTaskSwitchContext(); SWReq = 0; } } void esp_increase_tick_cnt(const TickType_t ticks) { esp_irqflag_t flag; flag = soc_save_local_irq(); g_esp_os_ticks += ticks; soc_restore_local_irq(flag); } void IRAM_ATTR xPortSysTickHandle(void *p) { uint32_t us; uint32_t ticks; uint32_t ccount; /** * System or application may close interrupt too long, such as the operation of read/write/erase flash. * And then the "ccount" value may be overflow. * * So add code here to calibrate system time. */ ccount = soc_get_ccount(); us = ccount / g_esp_ticks_per_us; g_esp_os_us += us; g_esp_os_cpu_clk += ccount; soc_set_ccount(0); soc_set_ccompare(_xt_tick_divisor); ticks = us / 1000 / portTICK_PERIOD_MS; if (!ticks) { ticks = 1; } g_esp_os_ticks += ticks; if (ticks > 1) { vTaskStepTick(ticks - 1); } if (xTaskIncrementTick() != pdFALSE) { vTaskSwitchContext(); } } /** * @brief Return current CPU clock frequency */ int esp_clk_cpu_freq(void) { return _xt_tick_divisor * XT_TICK_PER_SEC; } /* * See header file for description. */ portBASE_TYPE xPortStartScheduler(void) { /* * TAG 1.2.3 FreeRTOS call "portDISABLE_INTERRUPTS" at file tasks.c line 1973, this is not at old one. * This makes it to be a wrong value. * * So we should initialize global value "cpu_sr" with a right value. * * Todo: Remove this one when refactor startup function. */ cpu_sr = 0x20; /*******software isr*********/ _xt_isr_attach(ETS_SOFT_INUM, SoftIsrHdl, NULL); _xt_isr_unmask(1 << ETS_SOFT_INUM); _xt_isr_attach(ETS_MAX_INUM, xPortSysTickHandle, NULL); /* Initialize system tick timer interrupt and schedule the first tick. */ _xt_tick_divisor = xtbsp_clock_freq_hz() / XT_TICK_PER_SEC; g_esp_boot_ccount = soc_get_ccount(); soc_set_ccount(0); _xt_tick_timer_init(); vTaskSwitchContext(); /* Restore the context of the first task that is going to run. */ _xt_enter_first_task(); /* Should not get here as the tasks are now running! */ return pdTRUE; } void vPortEndScheduler(void) { /* It is unlikely that the CM3 port will require this function as there is nothing to return to. */ } /*-----------------------------------------------------------*/ /*-----------------------------------------------------------*/ static char ClosedLv1Isr = 0; void IRAM_ATTR vPortEnterCritical(void) { if (NMIIrqIsOn == 0) { if (ClosedLv1Isr != 1) { portDISABLE_INTERRUPTS(); ClosedLv1Isr = 1; } uxCriticalNesting++; } } /*-----------------------------------------------------------*/ void IRAM_ATTR vPortExitCritical(void) { if (NMIIrqIsOn == 0) { if (uxCriticalNesting > 0) { uxCriticalNesting--; if (uxCriticalNesting == 0) { if (ClosedLv1Isr == 1) { ClosedLv1Isr = 0; portENABLE_INTERRUPTS(); } } } else { ets_printf(DRAM_STR("E:C:%u\n"), uxCriticalNesting); PORT_ASSERT((uxCriticalNesting > 0)); } } } void show_critical_info(void) { ets_printf("ShowCritical:%u\n", uxCriticalNesting); ets_printf("SWReq:%u\n", SWReq); } #ifdef ESP_DPORT_CLOSE_NMI static int s_nmi_is_closed; void esp_dport_close_nmi(void) { vPortEnterCritical(); REG_WRITE(PERIPHS_DPORT_BASEADDR, REG_READ(PERIPHS_DPORT_BASEADDR) & ~0x1); s_nmi_is_closed = 1; vPortExitCritical(); } #define ESP_NMI_IS_CLOSED() s_nmi_is_closed #else #define ESP_NMI_IS_CLOSED() 0 #endif void IRAM_ATTR vPortETSIntrLock(void) { if (NMIIrqIsOn == 0) { vPortEnterCritical(); if (!ESP_NMI_IS_CLOSED()) { do { REG_WRITE(INT_ENA_WDEV, WDEV_TSF0_REACH_INT); } while(REG_READ(INT_ENA_WDEV) != WDEV_TSF0_REACH_INT); } } } void IRAM_ATTR vPortETSIntrUnlock(void) { if (NMIIrqIsOn == 0) { if (!ESP_NMI_IS_CLOSED()) { extern uint32_t WDEV_INTEREST_EVENT; REG_WRITE(INT_ENA_WDEV, WDEV_INTEREST_EVENT); } vPortExitCritical(); } } /* * @brief check if CPU core interrupt is disable */ bool interrupt_is_disable(void) { uint32_t tmp; __asm__ __volatile__ ( "rsr %0, PS\n" : "=a"(tmp) : : "memory"); return tmp & 0xFUL ? true : false; } static _xt_isr_entry s_isr[16]; static uint8_t s_xt_isr_status = 0; void _xt_isr_attach(uint8_t i, _xt_isr func, void* arg) { s_isr[i].handler = func; s_isr[i].arg = arg; } void IRAM_ATTR _xt_isr_handler(void) { do { uint32_t mask = soc_get_int_mask(); for (int i = 0; i < ETS_INT_MAX && mask; i++) { int bit = 1 << i; if (!(bit & mask) || !s_isr[i].handler) continue; soc_clear_int_mask(bit); s_xt_isr_status = 1; s_isr[i].handler(s_isr[i].arg); s_xt_isr_status = 0; mask &= ~bit; } } while (soc_get_int_mask()); } int xPortInIsrContext(void) { return s_xt_isr_status != 0; } void __attribute__((weak, noreturn)) vApplicationStackOverflowHook(xTaskHandle xTask, const char *pcTaskName) { ets_printf("***ERROR*** A stack overflow in task %s has been detected.\r\n", pcTaskName); abort(); } signed portBASE_TYPE xTaskGenericCreate(TaskFunction_t pxTaskCode, const signed char * const pcName, unsigned short usStackDepth, void *pvParameters, unsigned portBASE_TYPE uxPriority, TaskHandle_t *pxCreatedTask, StackType_t *puxStackBuffer, const MemoryRegion_t * const xRegions) { (void)puxStackBuffer; (void)xRegions; return xTaskCreate(pxTaskCode, (const char * const)pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask); } BaseType_t xQueueGenericReceive(QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeeking) { configASSERT(xJustPeeking == 0); return xQueueReceive(xQueue, pvBuffer, xTicksToWait); } void esp_internal_idle_hook(void) { extern void pmIdleHook(void); extern void esp_task_wdt_reset(void); esp_task_wdt_reset(); pmIdleHook(); soc_wait_int(); } #ifndef DISABLE_FREERTOS #if configUSE_IDLE_HOOK == 1 void __attribute__((weak)) vApplicationIdleHook(void) { } #endif #if configUSE_TICK_HOOK == 1 void __attribute__((weak)) vApplicationTickHook(void) { } #endif #endif uint32_t xPortGetTickRateHz(void) { return (uint32_t)configTICK_RATE_HZ; }