// Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "rom/ets_sys.h" #include "esp_err.h" #include "esp_phy_init.h" #include "esp_system.h" #include "esp_log.h" #include "nvs.h" #include "nvs_flash.h" #include "sdkconfig.h" #include "phy_init_data.h" #include "phy.h" static const char *TAG = "phy_init"; static uint8_t phy_check_calibration_data(uint8_t *rf_cal_data) { #define CHECK_NUM 26 #define CHIP_ID_L 24 #define CHIP_ID_H 25 uint8_t i; uint32_t *cal_data_word = (uint32_t *)rf_cal_data; uint32_t check_sum = 0; /* L: flag_1[79:76], version[59:56], mac_map[55:48], mac_l[47:24] */ uint32_t chip_id_l = ((REG_READ(0x3FF00058) & 0xF000) << 16) | (REG_READ(0x3ff00054) & 0xFFFFFFF); /* H: mac_l[31:24], mac_h[119:96] */ uint32_t chip_id_h = (REG_READ(0x3FF00050) & 0xFF000000) | (REG_READ(0x3ff0005C) & 0xFFFFFF); cal_data_word[CHIP_ID_L] = chip_id_l; cal_data_word[CHIP_ID_H] = chip_id_h; for (i = 0; i < CHECK_NUM; i++) { check_sum += cal_data_word[i]; } return (cal_data_word[CHECK_NUM] != ~check_sum); } /* temporary put rx_gain_dc_table in memory */ /* ToDo: use rx_gain_dc_table in nvs, need to modify internal libraries */ uint32_t rx_gain_dc_table[125]; esp_err_t esp_phy_rf_init(const esp_phy_init_data_t *init_data, esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t *calibration_data, phy_rf_module_t module) { esp_err_t status = ESP_OK; uint8_t sta_mac[6]; uint8_t *local_init_data = calloc(1, 256); memcpy(local_init_data, init_data->params, 128); extern uint32_t *phy_rx_gain_dc_table; phy_rx_gain_dc_table = calibration_data->rx_gain_dc_table; uint8_t cal_data_check = phy_check_calibration_data(calibration_data->rf_cal_data) || phy_check_data_table(phy_rx_gain_dc_table, 125, 1); phy_afterwake_set_rfoption(1); if (!cal_data_check) { write_data_to_rtc(calibration_data->rf_cal_data); } esp_efuse_mac_get_default(sta_mac); chip_init(local_init_data, sta_mac, CONFIG_CONSOLE_UART_BAUDRATE); get_data_from_rtc((uint8_t *)calibration_data); memcpy(rx_gain_dc_table, calibration_data->rx_gain_dc_table, 4 * 125); phy_rx_gain_dc_table = rx_gain_dc_table; free(local_init_data); if (cal_data_check == ESP_CAL_DATA_CHECK_FAIL) { #ifdef CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode); if (mode != PHY_RF_CAL_FULL) { esp_phy_store_cal_data_to_nvs(calibration_data); } #endif } return status; } esp_err_t esp_phy_rf_deinit(phy_rf_module_t module) { esp_err_t status = ESP_OK; return status; } // PHY init data handling functions #if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION #include "esp_partition.h" const esp_phy_init_data_t *esp_phy_get_init_data() { const esp_partition_t *partition = esp_partition_find_first( ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL); if (partition == NULL) { ESP_LOGE(TAG, "PHY data partition not found"); return NULL; } ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address); size_t init_data_store_length = sizeof(phy_init_magic_pre) + sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post); uint8_t *init_data_store = (uint8_t *) malloc(init_data_store_length); if (init_data_store == NULL) { ESP_LOGE(TAG, "failed to allocate memory for PHY init data"); return NULL; } esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err); return NULL; } if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 || memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post), PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) { ESP_LOGE(TAG, "failed to validate PHY data partition"); return NULL; } ESP_LOGD(TAG, "PHY data partition validated"); return (const esp_phy_init_data_t *)(init_data_store + sizeof(phy_init_magic_pre)); } void esp_phy_release_init_data(const esp_phy_init_data_t *init_data) { free((uint8_t *) init_data - sizeof(phy_init_magic_pre)); } #else // CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION // phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data const esp_phy_init_data_t *esp_phy_get_init_data() { ESP_LOGD(TAG, "loading PHY init data from application binary"); return &phy_init_data; } void esp_phy_release_init_data(const esp_phy_init_data_t *init_data) { // no-op } #endif // CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION // PHY calibration data handling functions static const char *PHY_NAMESPACE = "phy"; static const char *PHY_CAL_DATA_KEY = "cal_data"; static const char *PHY_RX_GAIN_DC_TABLE_KEY = "dc_table"; static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle, esp_phy_calibration_data_t *out_cal_data); static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle, const esp_phy_calibration_data_t *cal_data); esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t *out_cal_data) { nvs_handle handle; esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle); if (err == ESP_ERR_NVS_NOT_INITIALIZED) { ESP_LOGE(TAG, "%s: NVS has not been initialized. " "Call nvs_flash_init before starting WiFi/BT.", __func__); } else if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err); return err; } err = load_cal_data_from_nvs_handle(handle, out_cal_data); nvs_close(handle); return err; } esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t *cal_data) { nvs_handle handle; esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err); return err; } else { err = store_cal_data_to_nvs_handle(handle, cal_data); nvs_close(handle); return err; } } static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle, esp_phy_calibration_data_t *out_cal_data) { esp_err_t err; size_t length = sizeof(out_cal_data->rf_cal_data); err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data->rf_cal_data, &length); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err); return err; } if (length != sizeof(out_cal_data->rf_cal_data)) { ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length); return ESP_ERR_INVALID_SIZE; } length = sizeof(out_cal_data->rx_gain_dc_table); err = nvs_get_blob(handle, PHY_RX_GAIN_DC_TABLE_KEY, out_cal_data->rx_gain_dc_table, &length); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to get rx_gain_dc_table(0x%x)", __func__, err); return err; } if (length != sizeof(out_cal_data->rx_gain_dc_table)) { ESP_LOGD(TAG, "%s: invalid length of rx_gain_dc_table (%d)", __func__, length); return ESP_ERR_INVALID_SIZE; } return ESP_OK; } static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle, const esp_phy_calibration_data_t *cal_data) { esp_err_t err; err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data->rf_cal_data, sizeof(cal_data->rf_cal_data)); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err); return err; } err = nvs_set_blob(handle, PHY_RX_GAIN_DC_TABLE_KEY, cal_data->rx_gain_dc_table, sizeof(cal_data->rx_gain_dc_table)); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store rx gain dc table failed(0x%x)\n", __func__, err); return err; } err = nvs_commit(handle); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err); } return err; } void esp_phy_load_cal_and_init(phy_rf_module_t module) { esp_phy_calibration_data_t *cal_data = (esp_phy_calibration_data_t *) calloc(sizeof(esp_phy_calibration_data_t), 1); if (cal_data == NULL) { ESP_LOGE(TAG, "failed to allocate memory for RF calibration data"); abort(); } const esp_phy_init_data_t *init_data = esp_phy_get_init_data(); if (init_data == NULL) { ESP_LOGE(TAG, "failed to obtain PHY init data"); abort(); } #ifdef CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL; // if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) { // calibration_mode = PHY_RF_CAL_NONE; // } esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data); if (err != ESP_OK) { ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err); calibration_mode = PHY_RF_CAL_FULL; } esp_phy_rf_init(init_data, calibration_mode, cal_data, module); if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) { err = esp_phy_store_cal_data_to_nvs(cal_data); } else { err = ESP_OK; } #else esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module); #endif esp_phy_release_init_data(init_data); free(cal_data); // PHY maintains a copy of calibration data, so we can free this }