feat(util): refactor SHA algorithm of util components

This commit is contained in:
Dong Heng
2019-12-10 14:23:00 +08:00
parent e45679882a
commit b29087fd5c
11 changed files with 741 additions and 753 deletions

View File

@ -222,11 +222,11 @@ void bootloader_sha256_finish(bootloader_sha256_handle_t handle, uint8_t *digest
// typedef esp_sha_t* bootloader_sha256_handle_t;
static esp_sha_t s_sha256_ctx;
static esp_sha256_t s_sha256_ctx;
bootloader_sha256_handle_t bootloader_sha256_start()
{
esp_sha_t *ctx = &s_sha256_ctx;
esp_sha256_t *ctx = &s_sha256_ctx;
esp_sha256_init(ctx);
@ -235,12 +235,12 @@ bootloader_sha256_handle_t bootloader_sha256_start()
void bootloader_sha256_data(bootloader_sha256_handle_t handle, const void *data, size_t data_len)
{
esp_sha256_update((esp_sha_t *)handle, data, data_len);
esp_sha256_update((esp_sha256_t *)handle, data, data_len);
}
void bootloader_sha256_finish(bootloader_sha256_handle_t handle, uint8_t *digest)
{
esp_sha256_finish((esp_sha_t *)handle, digest);
esp_sha256_finish((esp_sha256_t *)handle, digest);
}
#endif

View File

@ -3,7 +3,7 @@ menu "libsodium"
config LIBSODIUM_USE_MBEDTLS_SHA
bool "Use mbedTLS SHA256 & SHA512 implementations"
default y
depends on !ESP_SHA
depends on !MBEDTLS_HARDWARE_SHA
help
If this option is enabled, libsodium will use thin wrappers
around mbedTLS for SHA256 & SHA512 operations.

View File

@ -31,7 +31,7 @@ extern "C" {
#include "esp_sha.h"
typedef esp_sha_t mbedtls_sha256_context;
typedef esp_sha256_t mbedtls_sha256_context;
#endif /* MBEDTLS_SHA256_ALT */

View File

@ -11,7 +11,7 @@ config util_assert
config ESP_SHA
bool "Enable Espressif SHA"
default y
default n
help
Enable Espressif SHA1, SHA256, SHA384 & SHA512 for other components to
save code size for ESP8285(ESP8266 + 1MB flash) users.

View File

@ -21,64 +21,29 @@
extern "C" {
#endif
typedef int (*sha_cal_t)(void *ctx, const void *src);
typedef enum {
SHA1 = 0,
SHA224 = 1,
SHA256 = 2,
SHA384 = 3,
SHA512 = 4,
SHA_INVALID = -1,
} esp_sha_type_t;
typedef struct {
uint32_t state[5];
uint32_t total[2];
uint8_t buffer[64];
} esp_sha1_t;
typedef struct {
esp_sha_type_t type; /*!< The sha type */
uint8_t buffer[64]; /*!< The data block being processed. */
uint32_t total[2]; /*!< The number of Bytes processed. */
uint32_t state[8]; /*!< The intermediate digest state. */
sha_cal_t sha_cal; /*!< The sha calculation. */
} esp_sha_t;
uint64_t length;
uint32_t curlen;
uint32_t state[8];
uint8_t buf[64];
} esp_sha256_t;
typedef struct {
esp_sha_type_t type; /*!< The sha type */
uint8_t buffer[128]; /*!< The data block being processed. */
uint64_t total[2]; /*!< The number of Bytes processed. */
uint64_t state[8]; /*!< The intermediate digest state. */
sha_cal_t sha_cal; /*!< The sha calculation. */
uint64_t total[2];
uint64_t state[8];
uint8_t buffer[128];
} esp_sha512_t;
typedef esp_sha_t esp_sha1_t;
typedef esp_sha_t esp_sha224_t;
typedef esp_sha_t esp_sha256_t;
typedef esp_sha256_t esp_sha224_t;
typedef esp_sha512_t esp_sha384_t;
/**
* @brief initialize the SHA(1/224/256) contex
*
* @param ctx SHA contex pointer
* @param type SHA type
* @param state_ctx SHA calculation factor
* @param size calculation factor size by "uint32_t"
* @param sha_cal calculation function for real SHA
*
* @return 0 if success or fail
*/
int __esp_sha_init(esp_sha_t *ctx, esp_sha_type_t type, const uint32_t *state_ctx, size_t size, sha_cal_t sha_cal);
/**
* @brief initialize the SHA(384/512) contex
*
* @param ctx SHA contex pointer
* @param type SHA type
* @param state_ctx SHA calculation factor
* @param size calculation factor size by "uint64_t"
*
* @return 0 if success or fail
*/
int __esp_sha512_init(esp_sha512_t *ctx, esp_sha_type_t type, const uint64_t *state_ctx, size_t size);
/**
* @brief initialize the SHA1 contex
*
@ -86,13 +51,7 @@ int __esp_sha512_init(esp_sha512_t *ctx, esp_sha_type_t type, const uint64_t *st
*
* @return 0 if success or fail
*/
static inline int esp_sha1_init(esp_sha1_t *ctx)
{
extern const uint32_t __g_esp_sha1_state_ctx[];
extern int __esp_sha1_process(void *ctx, const void *data);
return __esp_sha_init(ctx, SHA1, __g_esp_sha1_state_ctx, 5, __esp_sha1_process);
}
int esp_sha1_init(esp_sha1_t *ctx);
/**
* @brief initialize the SHA224 contex
@ -101,13 +60,7 @@ static inline int esp_sha1_init(esp_sha1_t *ctx)
*
* @return 0 if success or fail
*/
static inline int esp_sha224_init(esp_sha224_t *ctx)
{
extern const uint32_t __g_esp_sha224_state_ctx[];
extern int __esp_sha256_process(void *ctx, const void *data);
return __esp_sha_init(ctx, SHA224, __g_esp_sha224_state_ctx, 8, __esp_sha256_process);
}
int esp_sha224_init(esp_sha224_t *ctx);
/**
* @brief initialize the SHA256 contex
@ -116,13 +69,7 @@ static inline int esp_sha224_init(esp_sha224_t *ctx)
*
* @return 0 if success or fail
*/
static inline int esp_sha256_init(esp_sha256_t *ctx)
{
extern const uint32_t __g_esp_sha256_state_ctx[];
extern int __esp_sha256_process(void *ctx, const void *data);
return __esp_sha_init(ctx, SHA256, __g_esp_sha256_state_ctx, 8, __esp_sha256_process);
}
int esp_sha256_init(esp_sha256_t *ctx);
/**
* @brief initialize the SHA384 contex
@ -131,12 +78,7 @@ static inline int esp_sha256_init(esp_sha256_t *ctx)
*
* @return 0 if success or fail
*/
static inline int esp_sha384_init(esp_sha384_t *ctx)
{
extern const uint64_t __g_esp_sha384_state_ctx[];
return __esp_sha512_init(ctx, SHA384, __g_esp_sha384_state_ctx, 8);
}
int esp_sha384_init(esp_sha384_t *ctx);
/**
* @brief initialize the SHA512 contex
@ -145,23 +87,7 @@ static inline int esp_sha384_init(esp_sha384_t *ctx)
*
* @return 0 if success or fail
*/
static inline int esp_sha512_init(esp_sha512_t *ctx)
{
extern const uint64_t __g_esp_sha512_state_ctx[];
return __esp_sha512_init(ctx, SHA512, __g_esp_sha512_state_ctx, 8);
}
/**
* @brief calculate input data for SHA
*
* @param ctx SHA contex pointer
* @param src input data buffer pointer
* @param size input data bytes
*
* @return 0 if success or fail
*/
int __esp_sha_update(esp_sha_t *ctx, const void *src, size_t size);
int esp_sha512_init(esp_sha512_t *ctx);
/**
* @brief calculate input data for SHA1
@ -172,10 +98,7 @@ int __esp_sha_update(esp_sha_t *ctx, const void *src, size_t size);
*
* @return 0 if success or fail
*/
static inline int esp_sha1_update(esp_sha1_t *ctx, const void *src, size_t size)
{
return __esp_sha_update(ctx, src, size);
}
int esp_sha1_update(esp_sha1_t *ctx, const void *src, size_t size);
/**
* @brief calculate input data for SHA224
@ -186,10 +109,7 @@ static inline int esp_sha1_update(esp_sha1_t *ctx, const void *src, size_t size)
*
* @return 0 if success or fail
*/
static inline int esp_sha224_update(esp_sha224_t *ctx, const void *src, size_t size)
{
return __esp_sha_update(ctx, src, size);
}
int esp_sha224_update(esp_sha224_t *ctx, const void *src, size_t size);
/**
* @brief calculate input data for SHA256
@ -200,10 +120,7 @@ static inline int esp_sha224_update(esp_sha224_t *ctx, const void *src, size_t s
*
* @return 0 if success or fail
*/
static inline int esp_sha256_update(esp_sha256_t *ctx, const void *src, size_t size)
{
return __esp_sha_update(ctx, src, size);
}
int esp_sha256_update(esp_sha256_t *ctx, const void *src, size_t size);
/**
* @brief calculate input data for SHA384
@ -214,10 +131,7 @@ static inline int esp_sha256_update(esp_sha256_t *ctx, const void *src, size_t s
*
* @return 0 if success or fail
*/
static inline int esp_sha384_update(esp_sha384_t *ctx, const void *src, size_t size)
{
return __esp_sha_update((esp_sha_t *)ctx, src, size);
}
int esp_sha384_update(esp_sha384_t *ctx, const void *src, size_t size);
/**
* @brief calculate input data for SHA512
@ -228,20 +142,7 @@ static inline int esp_sha384_update(esp_sha384_t *ctx, const void *src, size_t s
*
* @return 0 if success or fail
*/
static inline int esp_sha512_update(esp_sha512_t *ctx, const void *src, size_t size)
{
return __esp_sha_update((esp_sha_t *)ctx, src, size);
}
/**
* @brief output SHA(1/224/256/384/512) calculation result
*
* @param ctx SHA contex pointer
* @param dest output data buffer pointer
*
* @return 0 if success or fail
*/
int __esp_sha_finish(esp_sha_t *ctx, void *dest);
int esp_sha512_update(esp_sha512_t *ctx, const void *src, size_t size);
/**
* @brief output SHA1 calculation result
@ -251,10 +152,7 @@ int __esp_sha_finish(esp_sha_t *ctx, void *dest);
*
* @return 0 if success or fail
*/
static inline int esp_sha1_finish(esp_sha1_t *ctx, void *dest)
{
return __esp_sha_finish(ctx, dest);
}
int esp_sha1_finish(esp_sha1_t *ctx, void *dest);
/**
* @brief output SHA224 calculation result
@ -264,10 +162,7 @@ static inline int esp_sha1_finish(esp_sha1_t *ctx, void *dest)
*
* @return 0 if success or fail
*/
static inline int esp_sha224_finish(esp_sha224_t *ctx, void *dest)
{
return __esp_sha_finish(ctx, dest);
}
int esp_sha224_finish(esp_sha224_t *ctx, void *dest);
/**
* @brief output SHA256 calculation result
@ -277,10 +172,7 @@ static inline int esp_sha224_finish(esp_sha224_t *ctx, void *dest)
*
* @return 0 if success or fail
*/
static inline int esp_sha256_finish(esp_sha256_t *ctx, void *dest)
{
return __esp_sha_finish(ctx, dest);
}
int esp_sha256_finish(esp_sha256_t *ctx, void *dest);
/**
* @brief output SHA384 calculation result
@ -290,10 +182,7 @@ static inline int esp_sha256_finish(esp_sha256_t *ctx, void *dest)
*
* @return 0 if success or fail
*/
static inline int esp_sha384_finish(esp_sha384_t *ctx, void *dest)
{
return __esp_sha_finish((esp_sha_t *)ctx, dest);
}
int esp_sha384_finish(esp_sha384_t *ctx, void *dest);
/**
* @brief output SHA512 calculation result
@ -303,10 +192,7 @@ static inline int esp_sha384_finish(esp_sha384_t *ctx, void *dest)
*
* @return 0 if success or fail
*/
static inline int esp_sha512_finish(esp_sha512_t *ctx, void *dest)
{
return __esp_sha_finish((esp_sha_t *)ctx, dest);
}
int esp_sha512_finish(esp_sha512_t *ctx, void *dest);
#ifdef __cplusplus
}

View File

@ -1,599 +0,0 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "util_assert.h"
#include <sys/errno.h>
#include "esp_sha.h"
#include "esp_log.h"
#define UL64(x) x##ULL
#define F0(x, y, z) ((x & y) | (z & (x | y)))
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define SHR(x, n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x, n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define TAG "SHA"
static const uint32_t sha_padding[] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
const uint32_t __g_esp_sha1_state_ctx[] = {
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
};
const uint32_t __g_esp_sha224_state_ctx[] = {
0xC1059ED8, 0x367CD507, 0x3070DD17, 0xF70E5939,
0xFFC00B31, 0x68581511, 0x64F98FA7, 0xBEFA4FA4
};
const uint32_t __g_esp_sha256_state_ctx[] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
const uint64_t __g_esp_sha384_state_ctx[] = {
0xCBBB9D5DC1059ED8, 0x629A292A367CD507, 0x9159015A3070DD17,
0x152FECD8F70E5939, 0x67332667FFC00B31, 0x8EB44A8768581511,
0xDB0C2E0D64F98FA7, 0x47B5481DBEFA4FA4
};
const uint64_t __g_esp_sha512_state_ctx[] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
static void esp_sha_put_be(void *dest, const void *src, size_t size, size_t steps)
{
uint8_t *d_buf = (uint8_t *)dest;
const uint8_t *s_buf = (const uint8_t *)src;
for (int i = 0; i < size; i += steps) {
for (int j = 0; j < steps; j++) {
d_buf[i + j] = s_buf[i + (steps - j - 1)];
}
}
}
int __esp_sha1_process(void *in_ctx, const void *src)
{
const uint8_t *data = (const uint8_t *)src;
esp_sha_t *ctx = (esp_sha_t *)in_ctx;
uint32_t temp, W[16], A[5];
esp_sha_put_be(W, data, 64, sizeof(uint32_t));
#undef S
#undef R
#undef P
#undef F
#undef K
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) \
( \
temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#define P(a,b,c,d,e,x) \
{ \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
for (int i = 0; i < 5; i++)
A[i] = ctx->state[i];
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P( A[0], A[1], A[2], A[3], A[4], W[0] );
P( A[4], A[0], A[1], A[2], A[3], W[1] );
P( A[3], A[4], A[0], A[1], A[2], W[2] );
P( A[2], A[3], A[4], A[0], A[1], W[3] );
P( A[1], A[2], A[3], A[4], A[0], W[4] );
P( A[0], A[1], A[2], A[3], A[4], W[5] );
P( A[4], A[0], A[1], A[2], A[3], W[6] );
P( A[3], A[4], A[0], A[1], A[2], W[7] );
P( A[2], A[3], A[4], A[0], A[1], W[8] );
P( A[1], A[2], A[3], A[4], A[0], W[9] );
P( A[0], A[1], A[2], A[3], A[4], W[10] );
P( A[4], A[0], A[1], A[2], A[3], W[11] );
P( A[3], A[4], A[0], A[1], A[2], W[12] );
P( A[2], A[3], A[4], A[0], A[1], W[13] );
P( A[1], A[2], A[3], A[4], A[0], W[14] );
P( A[0], A[1], A[2], A[3], A[4], W[15] );
P( A[4], A[0], A[1], A[2], A[3], R(16) );
P( A[3], A[4], A[0], A[1], A[2], R(17) );
P( A[2], A[3], A[4], A[0], A[1], R(18) );
P( A[1], A[2], A[3], A[4], A[0], R(19) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P( A[0], A[1], A[2], A[3], A[4], R(20) );
P( A[4], A[0], A[1], A[2], A[3], R(21) );
P( A[3], A[4], A[0], A[1], A[2], R(22) );
P( A[2], A[3], A[4], A[0], A[1], R(23) );
P( A[1], A[2], A[3], A[4], A[0], R(24) );
P( A[0], A[1], A[2], A[3], A[4], R(25) );
P( A[4], A[0], A[1], A[2], A[3], R(26) );
P( A[3], A[4], A[0], A[1], A[2], R(27) );
P( A[2], A[3], A[4], A[0], A[1], R(28) );
P( A[1], A[2], A[3], A[4], A[0], R(29) );
P( A[0], A[1], A[2], A[3], A[4], R(30) );
P( A[4], A[0], A[1], A[2], A[3], R(31) );
P( A[3], A[4], A[0], A[1], A[2], R(32) );
P( A[2], A[3], A[4], A[0], A[1], R(33) );
P( A[1], A[2], A[3], A[4], A[0], R(34) );
P( A[0], A[1], A[2], A[3], A[4], R(35) );
P( A[4], A[0], A[1], A[2], A[3], R(36) );
P( A[3], A[4], A[0], A[1], A[2], R(37) );
P( A[2], A[3], A[4], A[0], A[1], R(38) );
P( A[1], A[2], A[3], A[4], A[0], R(39) );
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P( A[0], A[1], A[2], A[3], A[4], R(40) );
P( A[4], A[0], A[1], A[2], A[3], R(41) );
P( A[3], A[4], A[0], A[1], A[2], R(42) );
P( A[2], A[3], A[4], A[0], A[1], R(43) );
P( A[1], A[2], A[3], A[4], A[0], R(44) );
P( A[0], A[1], A[2], A[3], A[4], R(45) );
P( A[4], A[0], A[1], A[2], A[3], R(46) );
P( A[3], A[4], A[0], A[1], A[2], R(47) );
P( A[2], A[3], A[4], A[0], A[1], R(48) );
P( A[1], A[2], A[3], A[4], A[0], R(49) );
P( A[0], A[1], A[2], A[3], A[4], R(50) );
P( A[4], A[0], A[1], A[2], A[3], R(51) );
P( A[3], A[4], A[0], A[1], A[2], R(52) );
P( A[2], A[3], A[4], A[0], A[1], R(53) );
P( A[1], A[2], A[3], A[4], A[0], R(54) );
P( A[0], A[1], A[2], A[3], A[4], R(55) );
P( A[4], A[0], A[1], A[2], A[3], R(56) );
P( A[3], A[4], A[0], A[1], A[2], R(57) );
P( A[2], A[3], A[4], A[0], A[1], R(58) );
P( A[1], A[2], A[3], A[4], A[0], R(59) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P( A[0], A[1], A[2], A[3], A[4], R(60) );
P( A[4], A[0], A[1], A[2], A[3], R(61) );
P( A[3], A[4], A[0], A[1], A[2], R(62) );
P( A[2], A[3], A[4], A[0], A[1], R(63) );
P( A[1], A[2], A[3], A[4], A[0], R(64) );
P( A[0], A[1], A[2], A[3], A[4], R(65) );
P( A[4], A[0], A[1], A[2], A[3], R(66) );
P( A[3], A[4], A[0], A[1], A[2], R(67) );
P( A[2], A[3], A[4], A[0], A[1], R(68) );
P( A[1], A[2], A[3], A[4], A[0], R(69) );
P( A[0], A[1], A[2], A[3], A[4], R(70) );
P( A[4], A[0], A[1], A[2], A[3], R(71) );
P( A[3], A[4], A[0], A[1], A[2], R(72) );
P( A[2], A[3], A[4], A[0], A[1], R(73) );
P( A[1], A[2], A[3], A[4], A[0], R(74) );
P( A[0], A[1], A[2], A[3], A[4], R(75) );
P( A[4], A[0], A[1], A[2], A[3], R(76) );
P( A[3], A[4], A[0], A[1], A[2], R(77) );
P( A[2], A[3], A[4], A[0], A[1], R(78) );
P( A[1], A[2], A[3], A[4], A[0], R(79) );
#undef K
#undef F
#undef R
#undef P
for (int i = 0; i < 5; i++)
ctx->state[i] += A[i];
return 0;
}
int __esp_sha256_process(void *in_ctx, const void *src)
{
const uint8_t *data = (const uint8_t *)src;
esp_sha_t *ctx = (esp_sha_t *)in_ctx;
uint32_t temp1, temp2, W[64];
uint32_t A[8];
#undef R
#undef P
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a, b, c, d, e, f, g, h, x, K) \
{ \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
static const uint32_t K[] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
for (int i = 0; i < 8; i++)
A[i] = ctx->state[i];
for (int i = 0; i < 64; i++) {
if (i < 16)
esp_sha_put_be(&W[i], data + 4 * i, 4, sizeof(uint32_t));
else
R(i);
P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]);
temp1 = A[7];
A[7] = A[6];
A[6] = A[5];
A[5] = A[4];
A[4] = A[3];
A[3] = A[2];
A[2] = A[1];
A[1] = A[0];
A[0] = temp1;
}
for (int i = 0; i < 8; i++)
ctx->state[i] += A[i];
return 0;
#undef R
#undef P
}
int __esp_sha512_process(void *in_ctx, const void *src)
{
int i;
uint64_t temp1, temp2, W[80];
uint64_t A[8];
const uint8_t *data = (const uint8_t *)src;
esp_sha512_t *ctx = (esp_sha512_t *)in_ctx;
static const uint64_t K[80] =
{
UL64(0x428A2F98D728AE22), UL64(0x7137449123EF65CD),
UL64(0xB5C0FBCFEC4D3B2F), UL64(0xE9B5DBA58189DBBC),
UL64(0x3956C25BF348B538), UL64(0x59F111F1B605D019),
UL64(0x923F82A4AF194F9B), UL64(0xAB1C5ED5DA6D8118),
UL64(0xD807AA98A3030242), UL64(0x12835B0145706FBE),
UL64(0x243185BE4EE4B28C), UL64(0x550C7DC3D5FFB4E2),
UL64(0x72BE5D74F27B896F), UL64(0x80DEB1FE3B1696B1),
UL64(0x9BDC06A725C71235), UL64(0xC19BF174CF692694),
UL64(0xE49B69C19EF14AD2), UL64(0xEFBE4786384F25E3),
UL64(0x0FC19DC68B8CD5B5), UL64(0x240CA1CC77AC9C65),
UL64(0x2DE92C6F592B0275), UL64(0x4A7484AA6EA6E483),
UL64(0x5CB0A9DCBD41FBD4), UL64(0x76F988DA831153B5),
UL64(0x983E5152EE66DFAB), UL64(0xA831C66D2DB43210),
UL64(0xB00327C898FB213F), UL64(0xBF597FC7BEEF0EE4),
UL64(0xC6E00BF33DA88FC2), UL64(0xD5A79147930AA725),
UL64(0x06CA6351E003826F), UL64(0x142929670A0E6E70),
UL64(0x27B70A8546D22FFC), UL64(0x2E1B21385C26C926),
UL64(0x4D2C6DFC5AC42AED), UL64(0x53380D139D95B3DF),
UL64(0x650A73548BAF63DE), UL64(0x766A0ABB3C77B2A8),
UL64(0x81C2C92E47EDAEE6), UL64(0x92722C851482353B),
UL64(0xA2BFE8A14CF10364), UL64(0xA81A664BBC423001),
UL64(0xC24B8B70D0F89791), UL64(0xC76C51A30654BE30),
UL64(0xD192E819D6EF5218), UL64(0xD69906245565A910),
UL64(0xF40E35855771202A), UL64(0x106AA07032BBD1B8),
UL64(0x19A4C116B8D2D0C8), UL64(0x1E376C085141AB53),
UL64(0x2748774CDF8EEB99), UL64(0x34B0BCB5E19B48A8),
UL64(0x391C0CB3C5C95A63), UL64(0x4ED8AA4AE3418ACB),
UL64(0x5B9CCA4F7763E373), UL64(0x682E6FF3D6B2B8A3),
UL64(0x748F82EE5DEFB2FC), UL64(0x78A5636F43172F60),
UL64(0x84C87814A1F0AB72), UL64(0x8CC702081A6439EC),
UL64(0x90BEFFFA23631E28), UL64(0xA4506CEBDE82BDE9),
UL64(0xBEF9A3F7B2C67915), UL64(0xC67178F2E372532B),
UL64(0xCA273ECEEA26619C), UL64(0xD186B8C721C0C207),
UL64(0xEADA7DD6CDE0EB1E), UL64(0xF57D4F7FEE6ED178),
UL64(0x06F067AA72176FBA), UL64(0x0A637DC5A2C898A6),
UL64(0x113F9804BEF90DAE), UL64(0x1B710B35131C471B),
UL64(0x28DB77F523047D84), UL64(0x32CAAB7B40C72493),
UL64(0x3C9EBE0A15C9BEBC), UL64(0x431D67C49C100D4C),
UL64(0x4CC5D4BECB3E42B6), UL64(0x597F299CFC657E2A),
UL64(0x5FCB6FAB3AD6FAEC), UL64(0x6C44198C4A475817)
};
#undef SHR
#undef ROTR
#undef S0
#undef S1
#undef S2
#undef S3
#undef F0
#undef F1
#undef P
#define SHR(x,n) (x >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (64 - n)))
#define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7))
#define S1(x) (ROTR(x,19) ^ ROTR(x,61) ^ SHR(x, 6))
#define S2(x) (ROTR(x,28) ^ ROTR(x,34) ^ ROTR(x,39))
#define S3(x) (ROTR(x,14) ^ ROTR(x,18) ^ ROTR(x,41))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define P(a,b,c,d,e,f,g,h,x,K) \
{ \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
for (i = 0; i < 16; i++) {
esp_sha_put_be(&W[i], data + (i << 3), sizeof(uint64_t), sizeof(uint64_t));
}
for (; i < 80; i++) {
W[i] = S1(W[i - 2]) + W[i - 7] +
S0(W[i - 15]) + W[i - 16];
}
for (int j = 0; j < 8; j++)
A[j] = ctx->state[j];
i = 0;
do {
P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i] ); i++;
P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i], K[i] ); i++;
P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i], K[i] ); i++;
P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i], K[i] ); i++;
P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i], K[i] ); i++;
P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i], K[i] ); i++;
P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i], K[i] ); i++;
P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i], K[i] ); i++;
} while (i < 80);
for (int j = 0; j < 8; j++)
ctx->state[j] += A[j];
return 0;
#undef SHR
#undef ROTR
#undef S0
#undef S1
#undef S2
#undef S3
#undef F0
#undef F1
#undef P
}
/**
* @brief initialize the SHA1/SHA224/SHA256 contex
*/
int __esp_sha_init(esp_sha_t *ctx, esp_sha_type_t type, const uint32_t *state_ctx, size_t size, sha_cal_t sha_cal)
{
util_assert(ctx);
ctx->total[0] = 0;
ctx->total[1] = 0;
for (int i = 0; i < size; i ++)
ctx->state[i] = state_ctx[i];
ctx->type = type;
ctx->sha_cal = sha_cal;
return 0;
}
/**
* @brief initialize the SHA512 contex
*/
int __esp_sha512_init(esp_sha512_t *ctx, esp_sha_type_t type, const uint64_t *state_ctx, size_t size)
{
util_assert(ctx);
ctx->total[0] = 0;
ctx->total[1] = 0;
for (int i = 0; i < size; i ++)
ctx->state[i] = state_ctx[i];
ctx->type = type;
ctx->sha_cal = __esp_sha512_process;
return 0;
}
/**
* @brief input data which is calculated for SHA
*/
int __esp_sha_update(esp_sha_t *ctx, const void *src, size_t size)
{
int ret;
size_t fill;
uint32_t left;
uint32_t step;
sha_cal_t sha_cal;
size_t ilen = size;
const uint8_t *input = (const uint8_t *)src;
util_assert(ctx);
util_assert(src);
if (ilen == 0)
return 0;
if (SHA1 == ctx->type || SHA224 == ctx->type || SHA256 == ctx->type) {
left = ctx->total[0] & 0x3F;
ctx->total[0] += (uint32_t)ilen;
if (ctx->total[0] < (uint32_t)ilen)
ctx->total[1]++;
sha_cal = ctx->sha_cal;
step = 64;
} else {
esp_sha512_t *ctx512 = (esp_sha512_t *)ctx;
left = (uint32_t)(ctx512->total[0] & 0x7F);
ctx512->total[0] += ilen;
if (ctx512->total[0] < ilen)
ctx512->total[1]++;
sha_cal = ctx512->sha_cal;
step = 128;
}
fill = step - left;
if (left && ilen >= fill) {
memcpy(ctx->buffer + left, input, fill);
if ((ret = sha_cal(ctx, ctx->buffer)) != 0)
return ret;
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= step) {
ret = sha_cal(ctx, input);
if (ret)
return ret;
input += step;
ilen -= step;
}
if (ilen > 0)
memcpy(ctx->buffer + left, input, ilen);
return 0;
}
/**
* @brief input data which is calculated for SHA
*/
int __esp_sha_finish(esp_sha_t *ctx, void *dest)
{
int ret;
size_t bytes = 0;
uint32_t last, padn;
uint64_t high, low;
uint8_t *output = dest;
size_t step;
void *state;
uint8_t msglen[16];
util_assert(ctx);
util_assert(dest);
if (SHA1 == ctx->type)
bytes = 20;
else if (SHA224 == ctx->type)
bytes = 28;
else if (SHA256 == ctx->type)
bytes = 32;
else if (SHA384 == ctx->type)
bytes = 48;
else if (SHA512 == ctx->type)
bytes = 64;
if (SHA1 == ctx->type || SHA224 == ctx->type || SHA256 == ctx->type) {
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
step = 4;
state = ctx->state;
} else {
esp_sha512_t *ctx512 = (esp_sha512_t *)ctx;
high = (ctx512->total[0] >> 61)
| (ctx512->total[1] << 3);
low = (ctx512->total[0] << 3);
last = (size_t)(ctx512->total[0] & 0x7F);
padn = (last < 112) ? (112 - last) : (240 - last);
step = 8;
state = ctx512->state;
}
esp_sha_put_be(msglen, &high, step, step);
esp_sha_put_be(msglen + step, &low, step, step);
ret = __esp_sha_update(ctx, sha_padding, padn);
if (ret)
return ret;
ret = __esp_sha_update(ctx, msglen, step * 2);
if (ret)
return ret;
esp_sha_put_be(output, state, bytes, step);
return 0;
}

165
components/util/src/sha1.c Normal file
View File

@ -0,0 +1,165 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "util_assert.h"
#include <sys/errno.h>
#include "esp_sha.h"
#include "esp_log.h"
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
#define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
(rol(block->l[i], 8) & 0x00FF00FF))
#define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
#define R0(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R1(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R2(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
#define R3(v,w,x,y,z,i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
w = rol(w, 30);
#define R4(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
w=rol(w, 30);
typedef union {
uint8_t c[64];
uint32_t l[16];
} block_t;
static void esp_sha1_transform(uint32_t state[5], const uint8_t buffer[64])
{
uint32_t a, b, c, d, e;
block_t workspace;
block_t *block = &workspace;
memcpy(block, buffer, 64);
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
int esp_sha1_init(esp_sha1_t *ctx)
{
util_assert(ctx);
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
ctx->total[0] = ctx->total[1] = 0;
return 0;
}
int esp_sha1_update(esp_sha1_t *ctx, const void *src, size_t size)
{
uint32_t i, j;
const uint8_t *data = (const uint8_t *)src;
util_assert(ctx);
util_assert(src);
util_assert(size);
j = (ctx->total[0] >> 3) & 63;
if ((ctx->total[0] += size << 3) < (size << 3))
ctx->total[1]++;
ctx->total[1] += (size >> 29);
if ((j + size) > 63) {
memcpy(&ctx->buffer[j], data, (i = 64-j));
esp_sha1_transform(ctx->state, ctx->buffer);
for ( ; i + 63 < size; i += 64)
esp_sha1_transform(ctx->state, &data[i]);
j = 0;
} else
i = 0;
memcpy(&ctx->buffer[j], &data[i], size - i);
return 0;
}
int esp_sha1_finish(esp_sha1_t *ctx, void *dest)
{
uint32_t i;
uint32_t index;
uint8_t finalcount[8];
uint8_t *digest = (uint8_t *)dest;
util_assert(ctx);
util_assert(dest);
for (i = 0; i < 8; i++)
finalcount[i] = (uint8_t)((ctx->total[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255);
index = 0x80;
esp_sha1_update(ctx, (uint8_t *)&index, 1);
while ((ctx->total[0] & 504) != 448) {
index = 0;
esp_sha1_update(ctx, (uint8_t *)&index, 1);
}
esp_sha1_update(ctx, finalcount, 8);
for (i = 0; i < 20; i++)
digest[i] = (uint8_t)((ctx->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
return 0;
}

View File

@ -0,0 +1,239 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "util_assert.h"
#include <sys/errno.h>
#include "esp_sha.h"
#include "esp_log.h"
#define ESP_GET_BE32(a) ((((uint32_t) (a)[0]) << 24) | (((uint32_t) (a)[1]) << 16) | \
(((uint32_t) (a)[2]) << 8) | ((uint32_t) (a)[3]))
#define ESP_PUT_BE64(a, val) \
do { \
(a)[0] = (uint8_t) (((uint64_t) (val)) >> 56); \
(a)[1] = (uint8_t) (((uint64_t) (val)) >> 48); \
(a)[2] = (uint8_t) (((uint64_t) (val)) >> 40); \
(a)[3] = (uint8_t) (((uint64_t) (val)) >> 32); \
(a)[4] = (uint8_t) (((uint64_t) (val)) >> 24); \
(a)[5] = (uint8_t) (((uint64_t) (val)) >> 16); \
(a)[6] = (uint8_t) (((uint64_t) (val)) >> 8); \
(a)[7] = (uint8_t) (((uint64_t) (val)) & 0xff); \
} while (0)
#define ESP_PUT_BE32(a, val) \
do { \
(a)[0] = (uint8_t) ((((uint32_t) (val)) >> 24) & 0xff); \
(a)[1] = (uint8_t) ((((uint32_t) (val)) >> 16) & 0xff); \
(a)[2] = (uint8_t) ((((uint32_t) (val)) >> 8) & 0xff); \
(a)[3] = (uint8_t) (((uint32_t) (val)) & 0xff); \
} while (0)
#define RORc(x, y) \
( ((((uint32_t) (x) & 0xFFFFFFFFUL) >> (uint32_t) ((y) & 31)) | \
((uint32_t) (x) << (uint32_t) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x), (n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#endif
#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
static const uint32_t K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
static void esp_sha256_transform(esp_sha256_t *ctx, uint8_t *buf)
{
uint32_t S[8], W[64], t0, t1;
uint32_t t;
int i;
for (i = 0; i < 8; i++)
S[i] = ctx->state[i];
for (i = 0; i < 16; i++)
W[i] = ESP_GET_BE32(buf + (4 * i));
for (i = 16; i < 64; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
for (i = 0; i < 64; ++i) {
RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}
for (i = 0; i < 8; i++)
ctx->state[i] = ctx->state[i] + S[i];
}
int esp_sha256_init(esp_sha256_t *ctx)
{
util_assert(ctx);
ctx->curlen = 0;
ctx->length = 0;
ctx->state[0] = 0x6A09E667UL;
ctx->state[1] = 0xBB67AE85UL;
ctx->state[2] = 0x3C6EF372UL;
ctx->state[3] = 0xA54FF53AUL;
ctx->state[4] = 0x510E527FUL;
ctx->state[5] = 0x9B05688CUL;
ctx->state[6] = 0x1F83D9ABUL;
ctx->state[7] = 0x5BE0CD19UL;
return 0;
}
int esp_sha224_init(esp_sha224_t *ctx)
{
util_assert(ctx);
ctx->curlen = 0;
ctx->length = 0;
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
return 0;
}
int esp_sha256_update(esp_sha256_t *ctx, const void *src, size_t size)
{
const uint8_t *in = (const uint8_t *)src;
uint32_t n;
util_assert(ctx);
util_assert(src);
util_assert(size);
if (ctx->curlen >= sizeof(ctx->buf))
return -1;
while (size > 0) {
if (ctx->curlen == 0 && size >= 64) {
esp_sha256_transform(ctx, (uint8_t *) in);
ctx->length += 64 * 8;
in += 64;
size -= 64;
} else {
n = MIN(size, (64 - ctx->curlen));
memcpy(ctx->buf + ctx->curlen, in, n);
ctx->curlen += n;
in += n;
size -= n;
if (ctx->curlen == 64) {
esp_sha256_transform(ctx, ctx->buf);
ctx->length += 8 * 64;
ctx->curlen = 0;
}
}
}
return 0;
}
int esp_sha224_update(esp_sha224_t *ctx, const void *src, size_t size)
{
util_assert(ctx);
util_assert(src);
util_assert(size);
return esp_sha256_update(ctx, src, size);
}
int esp_sha224_finish(esp_sha224_t *ctx, void *dest)
{
int i;
uint8_t *out = (uint8_t *)dest;
util_assert(ctx);
util_assert(dest);
if (ctx->curlen >= sizeof(ctx->buf))
return -1;
ctx->length += ctx->curlen * 8;
ctx->buf[ctx->curlen++] = 0x80;
if (ctx->curlen > 56) {
while (ctx->curlen < 64)
ctx->buf[ctx->curlen++] = 0;
esp_sha256_transform(ctx, ctx->buf);
ctx->curlen = 0;
}
while (ctx->curlen < 56)
ctx->buf[ctx->curlen++] = 0;
ESP_PUT_BE64(ctx->buf + 56, ctx->length);
esp_sha256_transform(ctx, ctx->buf);
for (i = 0; i < 7; i++)
ESP_PUT_BE32(out + (4 * i), ctx->state[i]);
return 0;
}
int esp_sha256_finish(esp_sha256_t *ctx, void *dest)
{
uint8_t *out = (uint8_t *)dest;
util_assert(ctx);
util_assert(dest);
esp_sha224_finish(ctx, dest);
ESP_PUT_BE32(out + 28, ctx->state[7]);
return 0;
}

View File

@ -0,0 +1,297 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "util_assert.h"
#include <sys/errno.h>
#include "esp_sha.h"
#include "esp_log.h"
#define UL64(x) x##ULL
#define SHR(x,n) ((x) >> (n))
#define ROTR(x,n) (SHR((x),(n)) | ((x) << (64 - (n))))
#define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7))
#define S1(x) (ROTR(x,19) ^ ROTR(x,61) ^ SHR(x, 6))
#define S2(x) (ROTR(x,28) ^ ROTR(x,34) ^ ROTR(x,39))
#define S3(x) (ROTR(x,14) ^ ROTR(x,18) ^ ROTR(x,41))
#define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define P(a,b,c,d,e,f,g,h,x,K) \
do \
{ \
temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \
temp2 = S2(a) + F0((a),(b),(c)); \
(d) += temp1; (h) = temp1 + temp2; \
} while( 0 )
#define GET_UINT64_BE(n,b,i) \
{ \
(n) = ( (uint64_t) (b)[(i) ] << 56 ) \
| ( (uint64_t) (b)[(i) + 1] << 48 ) \
| ( (uint64_t) (b)[(i) + 2] << 40 ) \
| ( (uint64_t) (b)[(i) + 3] << 32 ) \
| ( (uint64_t) (b)[(i) + 4] << 24 ) \
| ( (uint64_t) (b)[(i) + 5] << 16 ) \
| ( (uint64_t) (b)[(i) + 6] << 8 ) \
| ( (uint64_t) (b)[(i) + 7] ); \
}
#define PUT_UINT64_BE(n,b,i) \
{ \
(b)[(i) ] = (uint8_t) ( (n) >> 56 ); \
(b)[(i) + 1] = (uint8_t) ( (n) >> 48 ); \
(b)[(i) + 2] = (uint8_t) ( (n) >> 40 ); \
(b)[(i) + 3] = (uint8_t) ( (n) >> 32 ); \
(b)[(i) + 4] = (uint8_t) ( (n) >> 24 ); \
(b)[(i) + 5] = (uint8_t) ( (n) >> 16 ); \
(b)[(i) + 6] = (uint8_t) ( (n) >> 8 ); \
(b)[(i) + 7] = (uint8_t) ( (n) ); \
}
static const uint64_t K[80] =
{
UL64(0x428A2F98D728AE22), UL64(0x7137449123EF65CD),
UL64(0xB5C0FBCFEC4D3B2F), UL64(0xE9B5DBA58189DBBC),
UL64(0x3956C25BF348B538), UL64(0x59F111F1B605D019),
UL64(0x923F82A4AF194F9B), UL64(0xAB1C5ED5DA6D8118),
UL64(0xD807AA98A3030242), UL64(0x12835B0145706FBE),
UL64(0x243185BE4EE4B28C), UL64(0x550C7DC3D5FFB4E2),
UL64(0x72BE5D74F27B896F), UL64(0x80DEB1FE3B1696B1),
UL64(0x9BDC06A725C71235), UL64(0xC19BF174CF692694),
UL64(0xE49B69C19EF14AD2), UL64(0xEFBE4786384F25E3),
UL64(0x0FC19DC68B8CD5B5), UL64(0x240CA1CC77AC9C65),
UL64(0x2DE92C6F592B0275), UL64(0x4A7484AA6EA6E483),
UL64(0x5CB0A9DCBD41FBD4), UL64(0x76F988DA831153B5),
UL64(0x983E5152EE66DFAB), UL64(0xA831C66D2DB43210),
UL64(0xB00327C898FB213F), UL64(0xBF597FC7BEEF0EE4),
UL64(0xC6E00BF33DA88FC2), UL64(0xD5A79147930AA725),
UL64(0x06CA6351E003826F), UL64(0x142929670A0E6E70),
UL64(0x27B70A8546D22FFC), UL64(0x2E1B21385C26C926),
UL64(0x4D2C6DFC5AC42AED), UL64(0x53380D139D95B3DF),
UL64(0x650A73548BAF63DE), UL64(0x766A0ABB3C77B2A8),
UL64(0x81C2C92E47EDAEE6), UL64(0x92722C851482353B),
UL64(0xA2BFE8A14CF10364), UL64(0xA81A664BBC423001),
UL64(0xC24B8B70D0F89791), UL64(0xC76C51A30654BE30),
UL64(0xD192E819D6EF5218), UL64(0xD69906245565A910),
UL64(0xF40E35855771202A), UL64(0x106AA07032BBD1B8),
UL64(0x19A4C116B8D2D0C8), UL64(0x1E376C085141AB53),
UL64(0x2748774CDF8EEB99), UL64(0x34B0BCB5E19B48A8),
UL64(0x391C0CB3C5C95A63), UL64(0x4ED8AA4AE3418ACB),
UL64(0x5B9CCA4F7763E373), UL64(0x682E6FF3D6B2B8A3),
UL64(0x748F82EE5DEFB2FC), UL64(0x78A5636F43172F60),
UL64(0x84C87814A1F0AB72), UL64(0x8CC702081A6439EC),
UL64(0x90BEFFFA23631E28), UL64(0xA4506CEBDE82BDE9),
UL64(0xBEF9A3F7B2C67915), UL64(0xC67178F2E372532B),
UL64(0xCA273ECEEA26619C), UL64(0xD186B8C721C0C207),
UL64(0xEADA7DD6CDE0EB1E), UL64(0xF57D4F7FEE6ED178),
UL64(0x06F067AA72176FBA), UL64(0x0A637DC5A2C898A6),
UL64(0x113F9804BEF90DAE), UL64(0x1B710B35131C471B),
UL64(0x28DB77F523047D84), UL64(0x32CAAB7B40C72493),
UL64(0x3C9EBE0A15C9BEBC), UL64(0x431D67C49C100D4C),
UL64(0x4CC5D4BECB3E42B6), UL64(0x597F299CFC657E2A),
UL64(0x5FCB6FAB3AD6FAEC), UL64(0x6C44198C4A475817)
};
static int esp_sha512_transform(esp_sha512_t *ctx, const uint8_t *data)
{
int i;
uint64_t temp1, temp2, W[80];
uint64_t A, B, C, D, E, F, G, H;
for( i = 0; i < 16; i++ ) {
GET_UINT64_BE(W[i], data, i << 3);
}
for( ; i < 80; i++ )
W[i] = S1(W[i - 2]) + W[i - 7] + S0(W[i - 15]) + W[i - 16];
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
i = 0;
do {
P(A, B, C, D, E, F, G, H, W[i], K[i]); i++;
P(H, A, B, C, D, E, F, G, W[i], K[i]); i++;
P(G, H, A, B, C, D, E, F, W[i], K[i]); i++;
P(F, G, H, A, B, C, D, E, W[i], K[i]); i++;
P(E, F, G, H, A, B, C, D, W[i], K[i]); i++;
P(D, E, F, G, H, A, B, C, W[i], K[i]); i++;
P(C, D, E, F, G, H, A, B, W[i], K[i]); i++;
P(B, C, D, E, F, G, H, A, W[i], K[i]); i++;
} while (i < 80);
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
return( 0 );
}
int esp_sha512_init(esp_sha512_t *ctx)
{
util_assert(ctx);
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = UL64(0x6A09E667F3BCC908);
ctx->state[1] = UL64(0xBB67AE8584CAA73B);
ctx->state[2] = UL64(0x3C6EF372FE94F82B);
ctx->state[3] = UL64(0xA54FF53A5F1D36F1);
ctx->state[4] = UL64(0x510E527FADE682D1);
ctx->state[5] = UL64(0x9B05688C2B3E6C1F);
ctx->state[6] = UL64(0x1F83D9ABFB41BD6B);
ctx->state[7] = UL64(0x5BE0CD19137E2179);
return 0;
}
int esp_sha384_init(esp_sha384_t *ctx)
{
util_assert(ctx);
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = UL64(0xCBBB9D5DC1059ED8);
ctx->state[1] = UL64(0x629A292A367CD507);
ctx->state[2] = UL64(0x9159015A3070DD17);
ctx->state[3] = UL64(0x152FECD8F70E5939);
ctx->state[4] = UL64(0x67332667FFC00B31);
ctx->state[5] = UL64(0x8EB44A8768581511);
ctx->state[6] = UL64(0xDB0C2E0D64F98FA7);
ctx->state[7] = UL64(0x47B5481DBEFA4FA4);
return 0;
}
int esp_sha512_update(esp_sha512_t *ctx, const void *src, size_t size)
{
size_t fill;
uint32_t left;
const uint8_t *input = (const uint8_t *)src;
util_assert(ctx);
util_assert(src);
util_assert(size);
left = (uint32_t) (ctx->total[0] & 0x7F);
fill = 128 - left;
ctx->total[0] += (uint64_t)size;
if( ctx->total[0] < (uint64_t)size)
ctx->total[1]++;
if (left && size >= fill) {
memcpy(ctx->buffer + left, input, fill);
esp_sha512_transform(ctx, ctx->buffer);
input += fill;
size -= fill;
left = 0;
}
while (size >= 128) {
esp_sha512_transform(ctx, input);
input += 128;
size -= 128;
}
if (size > 0)
memcpy((void *) (ctx->buffer + left), input, size);
return( 0 );
}
int esp_sha384_update(esp_sha384_t *ctx, const void *src, size_t size)
{
util_assert(ctx);
util_assert(src);
util_assert(size);
return esp_sha512_update(ctx, src, size);
}
int esp_sha384_finish(esp_sha384_t *ctx, void *dest)
{
uint8_t used;
uint64_t high, low;
uint8_t *output = (uint8_t *)dest;
util_assert(ctx);
util_assert(dest);
used = ctx->total[0] & 0x7F;
ctx->buffer[used++] = 0x80;
memset(ctx->buffer + used, 0, 112 - used);
if (used > 112) {
esp_sha512_transform(ctx, ctx->buffer);
memset(ctx->buffer, 0, 112);
}
high = (ctx->total[0] >> 61) | (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
PUT_UINT64_BE(high, ctx->buffer, 112);
PUT_UINT64_BE(low, ctx->buffer, 120);
esp_sha512_transform(ctx, ctx->buffer);
PUT_UINT64_BE(ctx->state[0], output, 0);
PUT_UINT64_BE(ctx->state[1], output, 8);
PUT_UINT64_BE(ctx->state[2], output, 16);
PUT_UINT64_BE(ctx->state[3], output, 24);
PUT_UINT64_BE(ctx->state[4], output, 32);
PUT_UINT64_BE(ctx->state[5], output, 40);
return 0;
}
int esp_sha512_finish(esp_sha512_t *ctx, void *dest)
{
uint8_t *output = (uint8_t *)dest;
util_assert(ctx);
util_assert(dest);
esp_sha384_finish(ctx, dest);
PUT_UINT64_BE(ctx->state[6], output, 48);
PUT_UINT64_BE(ctx->state[7], output, 56);
return 0;
}

View File

@ -19,7 +19,7 @@
#ifdef CONFIG_ESP_SHA
#include "esp_sha.h"
typedef esp_sha_t SHA1_CTX;
typedef esp_sha1_t SHA1_CTX;
#define SHA1Init(_sha) esp_sha1_init(_sha)
#define SHA1Update(_sha, _s, _l) esp_sha1_update(_sha, _s, _l)

View File

@ -23,11 +23,11 @@
#ifdef CONFIG_ESP_SHA
#include "esp_sha.h"
typedef esp_sha_t sha256_state_t;
typedef esp_sha256_t sha256_state_t;
#define sha256_init(_sha) esp_sha256_init(_sha)
#define sha256_process(_sha, _s, _l) esp_sha256_update(_sha, _s, _l)
#define sha256_done(_sha, _d) esp_sha1_finish(_sha, _d)
#define sha256_done(_sha, _d) esp_sha256_finish(_sha, _d)
#else /* CONFIG_ESP_SHA */
#define SHA256_BLOCK_SIZE 64