Merge branch 'feature/add_fatfs' into 'master'

feat(fatfs): add FATFS for ESP8266

See merge request sdk/ESP8266_RTOS_SDK!1319
This commit is contained in:
Dong Heng
2020-07-23 11:34:07 +08:00
53 changed files with 28876 additions and 3 deletions

View File

@ -0,0 +1,179 @@
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016 Espressif Systems (Shanghai) PTE LTD
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _SDMMC_TYPES_H_
#define _SDMMC_TYPES_H_
#include <stdint.h>
#include <stddef.h>
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
/**
* Decoded values from SD card Card Specific Data register
*/
typedef struct {
int csd_ver; /*!< CSD structure format */
int mmc_ver; /*!< MMC version (for CID format) */
int capacity; /*!< total number of sectors */
int sector_size; /*!< sector size in bytes */
int read_block_len; /*!< block length for reads */
int card_command_class; /*!< Card Command Class for SD */
int tr_speed; /*!< Max transfer speed */
} sdmmc_csd_t;
/**
* Decoded values from SD card Card IDentification register
*/
typedef struct {
int mfg_id; /*!< manufacturer identification number */
int oem_id; /*!< OEM/product identification number */
char name[8]; /*!< product name (MMC v1 has the longest) */
int revision; /*!< product revision */
int serial; /*!< product serial number */
int date; /*!< manufacturing date */
} sdmmc_cid_t;
/**
* Decoded values from SD Configuration Register
*/
typedef struct {
int sd_spec; /*!< SD Physical layer specification version, reported by card */
int bus_width; /*!< bus widths supported by card: BIT(0) — 1-bit bus, BIT(2) — 4-bit bus */
} sdmmc_scr_t;
/**
* Decoded values of Extended Card Specific Data
*/
typedef struct {
uint8_t power_class; /*!< Power class used by the card */
} sdmmc_ext_csd_t;
/**
* SD/MMC command response buffer
*/
typedef uint32_t sdmmc_response_t[4];
/**
* SD SWITCH_FUNC response buffer
*/
typedef struct {
uint32_t data[512 / 8 / sizeof(uint32_t)]; /*!< response data */
} sdmmc_switch_func_rsp_t;
/**
* SD/MMC command information
*/
typedef struct {
uint32_t opcode; /*!< SD or MMC command index */
uint32_t arg; /*!< SD/MMC command argument */
sdmmc_response_t response; /*!< response buffer */
void* data; /*!< buffer to send or read into */
size_t datalen; /*!< length of data buffer */
size_t blklen; /*!< block length */
int flags; /*!< see below */
/** @cond */
#define SCF_ITSDONE 0x0001 /*!< command is complete */
#define SCF_CMD(flags) ((flags) & 0x00f0)
#define SCF_CMD_AC 0x0000
#define SCF_CMD_ADTC 0x0010
#define SCF_CMD_BC 0x0020
#define SCF_CMD_BCR 0x0030
#define SCF_CMD_READ 0x0040 /*!< read command (data expected) */
#define SCF_RSP_BSY 0x0100
#define SCF_RSP_136 0x0200
#define SCF_RSP_CRC 0x0400
#define SCF_RSP_IDX 0x0800
#define SCF_RSP_PRESENT 0x1000
/* response types */
#define SCF_RSP_R0 0 /*!< none */
#define SCF_RSP_R1 (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX)
#define SCF_RSP_R1B (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX|SCF_RSP_BSY)
#define SCF_RSP_R2 (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_136)
#define SCF_RSP_R3 (SCF_RSP_PRESENT)
#define SCF_RSP_R4 (SCF_RSP_PRESENT)
#define SCF_RSP_R5 (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX)
#define SCF_RSP_R5B (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX|SCF_RSP_BSY)
#define SCF_RSP_R6 (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX)
#define SCF_RSP_R7 (SCF_RSP_PRESENT|SCF_RSP_CRC|SCF_RSP_IDX)
/* special flags */
#define SCF_WAIT_BUSY 0x2000 /*!< Wait for completion of card busy signal before returning */
/** @endcond */
esp_err_t error; /*!< error returned from transfer */
int timeout_ms; /*!< response timeout, in milliseconds */
} sdmmc_command_t;
/**
* SD/MMC Host description
*
* This structure defines properties of SD/MMC host and functions
* of SD/MMC host which can be used by upper layers.
*/
typedef struct {
uint32_t flags; /*!< flags defining host properties */
#define SDMMC_HOST_FLAG_1BIT BIT(0) /*!< host supports 1-line SD and MMC protocol */
#define SDMMC_HOST_FLAG_4BIT BIT(1) /*!< host supports 4-line SD and MMC protocol */
#define SDMMC_HOST_FLAG_8BIT BIT(2) /*!< host supports 8-line MMC protocol */
#define SDMMC_HOST_FLAG_SPI BIT(3) /*!< host supports SPI protocol */
#define SDMMC_HOST_FLAG_DDR BIT(4) /*!< host supports DDR mode for SD/MMC */
int slot; /*!< slot number, to be passed to host functions */
int max_freq_khz; /*!< max frequency supported by the host */
#define SDMMC_FREQ_DEFAULT 20000 /*!< SD/MMC Default speed (limited by clock divider) */
#define SDMMC_FREQ_HIGHSPEED 40000 /*!< SD High speed (limited by clock divider) */
#define SDMMC_FREQ_PROBING 400 /*!< SD/MMC probing speed */
#define SDMMC_FREQ_52M 52000 /*!< MMC 52MHz speed */
#define SDMMC_FREQ_26M 26000 /*!< MMC 26MHz speed */
float io_voltage; /*!< I/O voltage used by the controller (voltage switching is not supported) */
esp_err_t (*init)(void); /*!< Host function to initialize the driver */
esp_err_t (*set_bus_width)(int slot, size_t width); /*!< host function to set bus width */
size_t (*get_bus_width)(int slot); /*!< host function to get bus width */
esp_err_t (*set_bus_ddr_mode)(int slot, bool ddr_enable); /*!< host function to set DDR mode */
esp_err_t (*set_card_clk)(int slot, uint32_t freq_khz); /*!< host function to set card clock frequency */
esp_err_t (*do_transaction)(int slot, sdmmc_command_t* cmdinfo); /*!< host function to do a transaction */
esp_err_t (*deinit)(void); /*!< host function to deinitialize the driver */
esp_err_t (*io_int_enable)(int slot); /*!< Host function to enable SDIO interrupt line */
esp_err_t (*io_int_wait)(int slot, TickType_t timeout_ticks); /*!< Host function to wait for SDIO interrupt line to be active */
int command_timeout_ms; /*!< timeout, in milliseconds, of a single command. Set to 0 to use the default value. */
} sdmmc_host_t;
/**
* SD/MMC card information structure
*/
typedef struct {
sdmmc_host_t host; /*!< Host with which the card is associated */
uint32_t ocr; /*!< OCR (Operation Conditions Register) value */
union {
sdmmc_cid_t cid; /*!< decoded CID (Card IDentification) register value */
sdmmc_response_t raw_cid; /*!< raw CID of MMC card to be decoded
after the CSD is fetched in the data transfer mode*/
};
sdmmc_csd_t csd; /*!< decoded CSD (Card-Specific Data) register value */
sdmmc_scr_t scr; /*!< decoded SCR (SD card Configuration Register) value */
sdmmc_ext_csd_t ext_csd; /*!< decoded EXT_CSD (Extended Card Specific Data) register value */
uint16_t rca; /*!< RCA (Relative Card Address) */
uint16_t max_freq_khz; /*!< Maximum frequency, in kHz, supported by the card */
uint32_t is_mem : 1; /*!< Bit indicates if the card is a memory card */
uint32_t is_sdio : 1; /*!< Bit indicates if the card is an IO card */
uint32_t is_mmc : 1; /*!< Bit indicates if the card is MMC */
uint32_t num_io_functions : 3; /*!< If is_sdio is 1, contains the number of IO functions on the card */
uint32_t log_bus_width : 2; /*!< log2(bus width supported by card) */
uint32_t is_ddr : 1; /*!< Card supports DDR mode */
uint32_t reserved : 23; /*!< Reserved for future expansion */
} sdmmc_card_t;
#endif // _SDMMC_TYPES_H_

View File

@ -0,0 +1,186 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stddef.h>
#include "esp_err.h"
#include "sdmmc_types.h"
#include "driver/gpio.h"
// #include "driver/spi_master.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Default sdmmc_host_t structure initializer for SD over SPI driver
*
* Uses SPI mode and max frequency set to 20MHz
*
* 'slot' can be set to one of HSPI_HOST, VSPI_HOST.
*/
/*#define SDSPI_HOST_DEFAULT() {\
.flags = SDMMC_HOST_FLAG_SPI, \
.slot = HSPI_HOST, \
.max_freq_khz = SDMMC_FREQ_DEFAULT, \
.io_voltage = 3.3f, \
.init = &sdspi_host_init, \
.set_bus_width = NULL, \
.get_bus_width = NULL, \
.set_bus_ddr_mode = NULL, \
.set_card_clk = &sdspi_host_set_card_clk, \
.do_transaction = &sdspi_host_do_transaction, \
.deinit = &sdspi_host_deinit, \
.io_int_enable = &sdspi_host_io_int_enable, \
.io_int_wait = &sdspi_host_io_int_wait, \
.command_timeout_ms = 0, \
}*/
/**
* Extra configuration for SPI host
*/
typedef struct {
gpio_num_t gpio_miso; ///< GPIO number of MISO signal
gpio_num_t gpio_mosi; ///< GPIO number of MOSI signal
gpio_num_t gpio_sck; ///< GPIO number of SCK signal
gpio_num_t gpio_cs; ///< GPIO number of CS signal
gpio_num_t gpio_cd; ///< GPIO number of card detect signal
gpio_num_t gpio_wp; ///< GPIO number of write protect signal
gpio_num_t gpio_int; ///< GPIO number of interrupt line (input) for SDIO card.
int dma_channel; ///< DMA channel to be used by SPI driver (1 or 2)
} sdspi_slot_config_t;
#define SDSPI_SLOT_NO_CD GPIO_NUM_NC ///< indicates that card detect line is not used
#define SDSPI_SLOT_NO_WP GPIO_NUM_NC ///< indicates that write protect line is not used
#define SDSPI_SLOT_NO_INT GPIO_NUM_NC ///< indicates that interrupt line is not used
/**
* Macro defining default configuration of SPI host
*/
#define SDSPI_SLOT_CONFIG_DEFAULT() {\
.gpio_miso = GPIO_NUM_2, \
.gpio_mosi = GPIO_NUM_15, \
.gpio_sck = GPIO_NUM_14, \
.gpio_cs = GPIO_NUM_13, \
.gpio_cd = SDSPI_SLOT_NO_CD, \
.gpio_wp = SDSPI_SLOT_NO_WP, \
.gpio_int = GPIO_NUM_NC, \
.dma_channel = 1 \
}
/**
* @brief Initialize SD SPI driver
*
* @note This function is not thread safe
*
* @return
* - ESP_OK on success
* - other error codes may be returned in future versions
*/
esp_err_t sdspi_host_init(void);
/**
* @brief Initialize SD SPI driver for the specific SPI controller
*
* @note This function is not thread safe
*
* @note The SDIO over sdspi needs an extra interrupt line. Call ``gpio_install_isr_service()`` before this function.
*
* @param slot SPI controller to use (HSPI_HOST or VSPI_HOST)
* @param slot_config pointer to slot configuration structure
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_ARG if sdspi_init_slot has invalid arguments
* - ESP_ERR_NO_MEM if memory can not be allocated
* - other errors from the underlying spi_master and gpio drivers
*/
esp_err_t sdspi_host_init_slot(int slot, const sdspi_slot_config_t* slot_config);
/**
* @brief Send command to the card and get response
*
* This function returns when command is sent and response is received,
* or data is transferred, or timeout occurs.
*
* @note This function is not thread safe w.r.t. init/deinit functions,
* and bus width/clock speed configuration functions. Multiple tasks
* can call sdspi_host_do_transaction as long as other sdspi_host_*
* functions are not called.
*
* @param slot SPI controller (HSPI_HOST or VSPI_HOST)
* @param cmdinfo pointer to structure describing command and data to transfer
* @return
* - ESP_OK on success
* - ESP_ERR_TIMEOUT if response or data transfer has timed out
* - ESP_ERR_INVALID_CRC if response or data transfer CRC check has failed
* - ESP_ERR_INVALID_RESPONSE if the card has sent an invalid response
*/
esp_err_t sdspi_host_do_transaction(int slot, sdmmc_command_t *cmdinfo);
/**
* @brief Set card clock frequency
*
* Currently only integer fractions of 40MHz clock can be used.
* For High Speed cards, 40MHz can be used.
* For Default Speed cards, 20MHz can be used.
*
* @note This function is not thread safe
*
* @param slot SPI controller (HSPI_HOST or VSPI_HOST)
* @param freq_khz card clock frequency, in kHz
* @return
* - ESP_OK on success
* - other error codes may be returned in the future
*/
esp_err_t sdspi_host_set_card_clk(int slot, uint32_t freq_khz);
/**
* @brief Release resources allocated using sdspi_host_init
*
* @note This function is not thread safe
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if sdspi_host_init function has not been called
*/
esp_err_t sdspi_host_deinit(void);
/**
* @brief Enable SDIO interrupt.
*
* @param slot SPI controller to use (HSPI_HOST or VSPI_HOST)
*
* @return
* - ESP_OK on success
*/
esp_err_t sdspi_host_io_int_enable(int slot);
/**
* @brief Wait for SDIO interrupt until timeout.
*
* @param slot SPI controller to use (HSPI_HOST or VSPI_HOST)
* @param timeout_ticks Ticks to wait before timeout.
*
* @return
* - ESP_OK on success
*/
esp_err_t sdspi_host_io_int_wait(int slot, TickType_t timeout_ticks);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,33 @@
// Copyright 2016-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP_COMPILER_H
#define __ESP_COMPILER_H
/*
* The likely and unlikely macro pairs:
* These macros are useful to place when application
* knows the majority ocurrence of a decision paths,
* placing one of these macros can hint the compiler
* to reorder instructions producing more optimized
* code.
*/
#if (CONFIG_COMPILER_OPTIMIZATION_PERF)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) (x)
#define unlikely(x) (x)
#endif
#endif

View File

@ -0,0 +1,17 @@
set(srcs "diskio/diskio.c"
"diskio/diskio_rawflash.c"
"diskio/diskio_wl.c"
"src/ff.c"
"port/freertos/ffsystem.c"
"src/ffunicode.c"
"vfs/vfs_fat.c"
"vfs/vfs_fat_spiflash.c")
if(IDF_TARGET STREQUAL "esp32")
list(APPEND srcs "vfs/vfs_fat_sdmmc.c")
endif()
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS diskio vfs src
REQUIRES wear_levelling
)

183
components/fatfs/Kconfig Normal file
View File

@ -0,0 +1,183 @@
menu "FAT Filesystem support"
choice FATFS_CHOOSE_CODEPAGE
prompt "OEM Code Page"
default FATFS_CODEPAGE_437
help
OEM code page used for file name encodings.
If "Dynamic" is selected, code page can be chosen at runtime using
f_setcp function. Note that choosing this option will increase
application size by ~480kB.
config FATFS_CODEPAGE_DYNAMIC
bool "Dynamic (all code pages supported)"
config FATFS_CODEPAGE_437
bool "US (CP437)"
config FATFS_CODEPAGE_720
bool "Arabic (CP720)"
config FATFS_CODEPAGE_737
bool "Greek (CP737)"
config FATFS_CODEPAGE_771
bool "KBL (CP771)"
config FATFS_CODEPAGE_775
bool "Baltic (CP775)"
config FATFS_CODEPAGE_850
bool "Latin 1 (CP850)"
config FATFS_CODEPAGE_852
bool "Latin 2 (CP852)"
config FATFS_CODEPAGE_855
bool "Cyrillic (CP855)"
config FATFS_CODEPAGE_857
bool "Turkish (CP857)"
config FATFS_CODEPAGE_860
bool "Portugese (CP860)"
config FATFS_CODEPAGE_861
bool "Icelandic (CP861)"
config FATFS_CODEPAGE_862
bool "Hebrew (CP862)"
config FATFS_CODEPAGE_863
bool "Canadian French (CP863)"
config FATFS_CODEPAGE_864
bool "Arabic (CP864)"
config FATFS_CODEPAGE_865
bool "Nordic (CP865)"
config FATFS_CODEPAGE_866
bool "Russian (CP866)"
config FATFS_CODEPAGE_869
bool "Greek 2 (CP869)"
config FATFS_CODEPAGE_932
bool "Japanese (DBCS) (CP932)"
config FATFS_CODEPAGE_936
bool "Simplified Chinese (DBCS) (CP936)"
config FATFS_CODEPAGE_949
bool "Korean (DBCS) (CP949)"
config FATFS_CODEPAGE_950
bool "Traditional Chinese (DBCS) (CP950)"
endchoice
config FATFS_CODEPAGE
int
default 0 if FATFS_CODEPAGE_DYNAMIC
default 437 if FATFS_CODEPAGE_437
default 720 if FATFS_CODEPAGE_720
default 737 if FATFS_CODEPAGE_737
default 771 if FATFS_CODEPAGE_771
default 775 if FATFS_CODEPAGE_775
default 850 if FATFS_CODEPAGE_850
default 852 if FATFS_CODEPAGE_852
default 855 if FATFS_CODEPAGE_855
default 857 if FATFS_CODEPAGE_857
default 860 if FATFS_CODEPAGE_860
default 861 if FATFS_CODEPAGE_861
default 862 if FATFS_CODEPAGE_862
default 863 if FATFS_CODEPAGE_863
default 864 if FATFS_CODEPAGE_864
default 865 if FATFS_CODEPAGE_865
default 866 if FATFS_CODEPAGE_866
default 869 if FATFS_CODEPAGE_869
default 932 if FATFS_CODEPAGE_932
default 936 if FATFS_CODEPAGE_936
default 949 if FATFS_CODEPAGE_949
default 950 if FATFS_CODEPAGE_950
default 437
choice FATFS_LONG_FILENAMES
prompt "Long filename support"
default FATFS_LFN_NONE
help
Support long filenames in FAT. Long filename data increases
memory usage. FATFS can be configured to store the buffer for
long filename data in stack or heap.
config FATFS_LFN_NONE
bool "No long filenames"
config FATFS_LFN_HEAP
bool "Long filename buffer in heap"
config FATFS_LFN_STACK
bool "Long filename buffer on stack"
endchoice
config FATFS_MAX_LFN
int "Max long filename length"
depends on !FATFS_LFN_NONE
default 255
range 12 255
help
Maximum long filename length. Can be reduced to save RAM.
choice FATFS_API_ENCODING
prompt "API character encoding"
depends on !FATFS_LFN_NONE
default FATFS_API_ENCODING_ANSI_OEM
help
Choose encoding for character and string arguments/returns when using
FATFS APIs. The encoding of arguments will usually depend on text
editor settings.
config FATFS_API_ENCODING_ANSI_OEM
bool "API uses ANSI/OEM encoding"
config FATFS_API_ENCODING_UTF_16
bool "API uses UTF-16 encoding"
config FATFS_API_ENCODING_UTF_8
bool "API uses UTF-8 encoding"
endchoice
config FATFS_FS_LOCK
int "Number of simultaneously open files protected by lock function"
default 0
range 0 65535
help
This option sets the FATFS configuration value _FS_LOCK.
The option _FS_LOCK switches file lock function to control duplicated file open
and illegal operation to open objects.
* 0: Disable file lock function. To avoid volume corruption, application
should avoid illegal open, remove and rename to the open objects.
* >0: Enable file lock function. The value defines how many files/sub-directories
can be opened simultaneously under file lock control.
Note that the file lock control is independent of re-entrancy.
config FATFS_TIMEOUT_MS
int "Timeout for acquiring a file lock, ms"
default 10000
help
This option sets FATFS configuration value _FS_TIMEOUT, scaled to milliseconds.
Sets the number of milliseconds FATFS will wait to acquire a mutex when
operating on an open file. For example, if one task is performing a lenghty
operation, another task will wait for the first task to release the lock,
and time out after amount of time set by this option.
config FATFS_PER_FILE_CACHE
bool "Use separate cache for each file"
default y
help
This option affects FATFS configuration value _FS_TINY.
If this option is set, _FS_TINY is 0, and each open file has its own cache,
size of the cache is equal to the _MAX_SS variable (512 or 4096 bytes).
This option uses more RAM if more than 1 file is open, but needs less reads
and writes to the storage for some operations.
If this option is not set, _FS_TINY is 1, and single cache is used for
all open files, size is also equal to _MAX_SS variable. This reduces the
amount of heap used when multiple files are open, but increases the number
of read and write operations which FATFS needs to make.
config FATFS_ALLOC_PREFER_EXTRAM
bool "Perfer external RAM when allocating FATFS buffers"
default y
depends on SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
help
When the option is enabled, internal buffers used by FATFS will be allocated
from external RAM. If the allocation from external RAM fails, the buffer will
be allocated from the internal RAM.
Disable this option if optimizing for performance. Enable this option if
optimizing for internal memory size.
endmenu

View File

@ -0,0 +1,3 @@
COMPONENT_ADD_INCLUDEDIRS := diskio vfs src
COMPONENT_SRCDIRS := diskio vfs port/freertos src
COMPONENT_OBJEXCLUDE := src/diskio.o src/ffsystem.o diskio/diskio_sdmmc.o vfs/vfs_fat_sdmmc.o

View File

@ -0,0 +1,93 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */
/* ESP-IDF port Copyright 2016 Espressif Systems (Shanghai) PTE LTD */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <sys/time.h>
#include "diskio_impl.h"
#include "ffconf.h"
#include "ff.h"
static ff_diskio_impl_t * s_impls[FF_VOLUMES] = { NULL };
#if FF_MULTI_PARTITION /* Multiple partition configuration */
PARTITION VolToPart[] = {
{0, 0}, /* Logical drive 0 ==> Physical drive 0, auto detection */
{1, 0} /* Logical drive 1 ==> Physical drive 1, auto detection */
};
#endif
esp_err_t ff_diskio_get_drive(BYTE* out_pdrv)
{
BYTE i;
for(i=0; i<FF_VOLUMES; i++) {
if (!s_impls[i]) {
*out_pdrv = i;
return ESP_OK;
}
}
return ESP_ERR_NOT_FOUND;
}
void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t* discio_impl)
{
assert(pdrv < FF_VOLUMES);
if (s_impls[pdrv]) {
ff_diskio_impl_t* im = s_impls[pdrv];
s_impls[pdrv] = NULL;
free(im);
}
if (!discio_impl) {
return;
}
ff_diskio_impl_t * impl = (ff_diskio_impl_t *)malloc(sizeof(ff_diskio_impl_t));
assert(impl != NULL);
memcpy(impl, discio_impl, sizeof(ff_diskio_impl_t));
s_impls[pdrv] = impl;
}
DSTATUS ff_disk_initialize (BYTE pdrv)
{
return s_impls[pdrv]->init(pdrv);
}
DSTATUS ff_disk_status (BYTE pdrv)
{
return s_impls[pdrv]->status(pdrv);
}
DRESULT ff_disk_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count)
{
return s_impls[pdrv]->read(pdrv, buff, sector, count);
}
DRESULT ff_disk_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
return s_impls[pdrv]->write(pdrv, buff, sector, count);
}
DRESULT ff_disk_ioctl (BYTE pdrv, BYTE cmd, void* buff)
{
return s_impls[pdrv]->ioctl(pdrv, cmd, buff);
}
DWORD get_fattime(void)
{
time_t t = time(NULL);
struct tm tmr;
localtime_r(&t, &tmr);
int year = tmr.tm_year < 80 ? 0 : tmr.tm_year - 80;
return ((DWORD)(year) << 25)
| ((DWORD)(tmr.tm_mon + 1) << 21)
| ((DWORD)tmr.tm_mday << 16)
| (WORD)(tmr.tm_hour << 11)
| (WORD)(tmr.tm_min << 5)
| (WORD)(tmr.tm_sec >> 1);
}

View File

@ -0,0 +1,71 @@
// Copyright 2017-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
typedef unsigned int UINT;
typedef unsigned char BYTE;
typedef uint32_t DWORD;
#include "diskio.h"
#include "esp_err.h"
/**
* Structure of pointers to disk IO driver functions.
*
* See FatFs documentation for details about these functions
*/
typedef struct {
DSTATUS (*init) (unsigned char pdrv); /*!< disk initialization function */
DSTATUS (*status) (unsigned char pdrv); /*!< disk status check function */
DRESULT (*read) (unsigned char pdrv, unsigned char* buff, uint32_t sector, unsigned count); /*!< sector read function */
DRESULT (*write) (unsigned char pdrv, const unsigned char* buff, uint32_t sector, unsigned count); /*!< sector write function */
DRESULT (*ioctl) (unsigned char pdrv, unsigned char cmd, void* buff); /*!< function to get info about disk and do some misc operations */
} ff_diskio_impl_t;
/**
* Register or unregister diskio driver for given drive number.
*
* When FATFS library calls one of disk_xxx functions for driver number pdrv,
* corresponding function in discio_impl for given pdrv will be called.
*
* @param pdrv drive number
* @param discio_impl pointer to ff_diskio_impl_t structure with diskio functions
* or NULL to unregister and free previously registered drive
*/
void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t* discio_impl);
#define ff_diskio_unregister(pdrv_) ff_diskio_register(pdrv_, NULL)
/**
* Get next available drive number
*
* @param out_pdrv pointer to the byte to set if successful
*
* @return ESP_OK on success
* ESP_ERR_NOT_FOUND if all drives are attached
*/
esp_err_t ff_diskio_get_drive(BYTE* out_pdrv);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,105 @@
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "diskio_impl.h"
#include "ffconf.h"
#include "ff.h"
#include "esp_log.h"
#include "diskio_rawflash.h"
#include "esp_compiler.h"
static const char* TAG = "diskio_rawflash";
const esp_partition_t* ff_raw_handles[FF_VOLUMES];
DSTATUS ff_raw_initialize (BYTE pdrv)
{
return 0;
}
DSTATUS ff_raw_status (BYTE pdrv)
{
return 0;
}
DRESULT ff_raw_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count)
{
ESP_LOGV(TAG, "ff_raw_read - pdrv=%i, sector=%i, count=%in", (unsigned int)pdrv, (unsigned int)sector, (unsigned int)count);
const esp_partition_t* part = ff_raw_handles[pdrv];
assert(part);
esp_err_t err = esp_partition_read(part, sector * SPI_FLASH_SEC_SIZE, buff, count * SPI_FLASH_SEC_SIZE);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "esp_partition_read failed (0x%x)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_raw_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count)
{
return RES_ERROR;
}
DRESULT ff_raw_ioctl (BYTE pdrv, BYTE cmd, void *buff)
{
const esp_partition_t* part = ff_raw_handles[pdrv];
ESP_LOGV(TAG, "ff_raw_ioctl: cmd=%in", cmd);
assert(part);
switch (cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*((DWORD *) buff) = part->size / SPI_FLASH_SEC_SIZE;
return RES_OK;
case GET_SECTOR_SIZE:
*((WORD *) buff) = SPI_FLASH_SEC_SIZE;
return RES_OK;
case GET_BLOCK_SIZE:
return RES_ERROR;
}
return RES_ERROR;
}
esp_err_t ff_diskio_register_raw_partition(BYTE pdrv, const esp_partition_t* part_handle)
{
if (pdrv >= FF_VOLUMES) {
return ESP_ERR_INVALID_ARG;
}
static const ff_diskio_impl_t raw_impl = {
.init = &ff_raw_initialize,
.status = &ff_raw_status,
.read = &ff_raw_read,
.write = &ff_raw_write,
.ioctl = &ff_raw_ioctl
};
ff_diskio_register(pdrv, &raw_impl);
ff_raw_handles[pdrv] = part_handle;
return ESP_OK;
}
BYTE ff_diskio_get_pdrv_raw(const esp_partition_t* part_handle)
{
for (int i = 0; i < FF_VOLUMES; i++) {
if (part_handle == ff_raw_handles[i]) {
return i;
}
}
return 0xff;
}

View File

@ -0,0 +1,37 @@
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DISKIO_RAWFLASH_DEFINED
#define _DISKIO_RAWFLASH_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
#include "esp_partition.h"
/**
* Register spi flash partition
*
* @param pdrv drive number
* @param part_handle pointer to raw flash partition.
*/
esp_err_t ff_diskio_register_raw_partition(unsigned char pdrv, const esp_partition_t* part_handle);
unsigned char ff_diskio_get_pdrv_raw(const esp_partition_t* part_handle);
#ifdef __cplusplus
}
#endif
#endif // _DISKIO_RAWFLASH_DEFINED

View File

@ -0,0 +1,91 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "diskio_impl.h"
#include "ffconf.h"
#include "ff.h"
#include "sdmmc_cmd.h"
#include "esp_log.h"
#include "esp_compiler.h"
static sdmmc_card_t* s_cards[FF_VOLUMES] = { NULL };
static const char* TAG = "diskio_sdmmc";
DSTATUS ff_sdmmc_initialize (BYTE pdrv)
{
return 0;
}
DSTATUS ff_sdmmc_status (BYTE pdrv)
{
return 0;
}
DRESULT ff_sdmmc_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_read_sectors(card, buff, sector, count);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "sdmmc_read_blocks failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_sdmmc_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_write_sectors(card, buff, sector, count);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "sdmmc_write_blocks failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_sdmmc_ioctl (BYTE pdrv, BYTE cmd, void* buff)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
switch(cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*((DWORD*) buff) = card->csd.capacity;
return RES_OK;
case GET_SECTOR_SIZE:
*((WORD*) buff) = card->csd.sector_size;
return RES_OK;
case GET_BLOCK_SIZE:
return RES_ERROR;
}
return RES_ERROR;
}
void ff_diskio_register_sdmmc(BYTE pdrv, sdmmc_card_t* card)
{
static const ff_diskio_impl_t sdmmc_impl = {
.init = &ff_sdmmc_initialize,
.status = &ff_sdmmc_status,
.read = &ff_sdmmc_read,
.write = &ff_sdmmc_write,
.ioctl = &ff_sdmmc_ioctl
};
s_cards[pdrv] = card;
ff_diskio_register(pdrv, &sdmmc_impl);
}

View File

@ -0,0 +1,35 @@
// Copyright 2017-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "sdmmc_cmd.h"
#include "driver/sdmmc_host.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Register SD/MMC diskio driver
*
* @param pdrv drive number
* @param card pointer to sdmmc_card_t structure describing a card; card should be initialized before calling f_mount.
*/
void ff_diskio_register_sdmmc(unsigned char pdrv, sdmmc_card_t* card);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,127 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "diskio_impl.h"
#include "ffconf.h"
#include "ff.h"
#include "esp_log.h"
#include "diskio_wl.h"
#include "wear_levelling.h"
#include "esp_compiler.h"
static const char* TAG = "ff_diskio_spiflash";
wl_handle_t ff_wl_handles[FF_VOLUMES] = {
WL_INVALID_HANDLE,
WL_INVALID_HANDLE,
};
DSTATUS ff_wl_initialize (BYTE pdrv)
{
return 0;
}
DSTATUS ff_wl_status (BYTE pdrv)
{
return 0;
}
DRESULT ff_wl_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count)
{
ESP_LOGV(TAG, "ff_wl_read - pdrv=%i, sector=%i, count=%i\n", (unsigned int)pdrv, (unsigned int)sector, (unsigned int)count);
wl_handle_t wl_handle = ff_wl_handles[pdrv];
assert(wl_handle + 1);
esp_err_t err = wl_read(wl_handle, sector * wl_sector_size(wl_handle), buff, count * wl_sector_size(wl_handle));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "wl_read failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_wl_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count)
{
ESP_LOGV(TAG, "ff_wl_write - pdrv=%i, sector=%i, count=%i\n", (unsigned int)pdrv, (unsigned int)sector, (unsigned int)count);
wl_handle_t wl_handle = ff_wl_handles[pdrv];
assert(wl_handle + 1);
esp_err_t err = wl_erase_range(wl_handle, sector * wl_sector_size(wl_handle), count * wl_sector_size(wl_handle));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "wl_erase_range failed (%d)", err);
return RES_ERROR;
}
err = wl_write(wl_handle, sector * wl_sector_size(wl_handle), buff, count * wl_sector_size(wl_handle));
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "wl_write failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_wl_ioctl (BYTE pdrv, BYTE cmd, void *buff)
{
wl_handle_t wl_handle = ff_wl_handles[pdrv];
ESP_LOGV(TAG, "ff_wl_ioctl: cmd=%i\n", cmd);
assert(wl_handle + 1);
switch (cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*((DWORD *) buff) = wl_size(wl_handle) / wl_sector_size(wl_handle);
return RES_OK;
case GET_SECTOR_SIZE:
*((WORD *) buff) = wl_sector_size(wl_handle);
return RES_OK;
case GET_BLOCK_SIZE:
return RES_ERROR;
}
return RES_ERROR;
}
esp_err_t ff_diskio_register_wl_partition(BYTE pdrv, wl_handle_t flash_handle)
{
if (pdrv >= FF_VOLUMES) {
return ESP_ERR_INVALID_ARG;
}
static const ff_diskio_impl_t wl_impl = {
.init = &ff_wl_initialize,
.status = &ff_wl_status,
.read = &ff_wl_read,
.write = &ff_wl_write,
.ioctl = &ff_wl_ioctl
};
ff_wl_handles[pdrv] = flash_handle;
ff_diskio_register(pdrv, &wl_impl);
return ESP_OK;
}
BYTE ff_diskio_get_pdrv_wl(wl_handle_t flash_handle)
{
for (int i = 0; i < FF_VOLUMES; i++) {
if (flash_handle == ff_wl_handles[i]) {
return i;
}
}
return 0xff;
}
void ff_diskio_clear_pdrv_wl(wl_handle_t flash_handle)
{
for (int i = 0; i < FF_VOLUMES; i++) {
if (flash_handle == ff_wl_handles[i]) {
ff_wl_handles[i] = WL_INVALID_HANDLE;
}
}
}

View File

@ -0,0 +1,39 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DISKIO_WL_DEFINED
#define _DISKIO_WL_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
#include "wear_levelling.h"
/**
* Register spi flash partition
*
* @param pdrv drive number
* @param flash_handle handle of the wear levelling partition.
*/
esp_err_t ff_diskio_register_wl_partition(unsigned char pdrv, wl_handle_t flash_handle);
unsigned char ff_diskio_get_pdrv_wl(wl_handle_t flash_handle);
void ff_diskio_clear_pdrv_wl(wl_handle_t flash_handle);
#ifdef __cplusplus
}
#endif
#endif // _DISKIO_WL_DEFINED

View File

@ -0,0 +1,108 @@
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2017 */
/*------------------------------------------------------------------------*/
#include <string.h>
#include <stdlib.h>
#include "ff.h"
#include "sdkconfig.h"
#ifdef CONFIG_FATFS_ALLOC_EXTRAM_FIRST
#include "esp_heap_caps.h"
#endif
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null on not enough core) */
unsigned msize /* Number of bytes to allocate */
)
{
#ifdef CONFIG_FATFS_ALLOC_EXTRAM_FIRST
return heap_caps_malloc_prefer(size, 2, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM,
MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
#else
return malloc(msize);
#endif
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do for null) */
)
{
free(mblock); /* Free the memory block with POSIX API */
}
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t *sobj /* Pointer to return the created sync object */
)
{
*sobj = xSemaphoreCreateMutex();
return (*sobj != NULL) ? 1 : 0;
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
vSemaphoreDelete(sobj);
return 1;
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
return (xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE) ? 1 : 0;
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
xSemaphoreGive(sobj);
}
#endif // FF_FS_REENTRANT

View File

@ -0,0 +1,46 @@
/*------------------------------------------------------------------------*/
/* OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/*------------------------------------------------------------------------*/
#include "ff.h"
#include <stdlib.h>
/* This is the implementation for host-side testing on Linux.
* Host-side tests are single threaded, so lock functionality isn't needed.
*/
void* ff_memalloc(UINT msize)
{
return malloc(msize);
}
void ff_memfree(void* mblock)
{
free(mblock);
}
/* 1:Function succeeded, 0:Could not create the sync object */
int ff_cre_syncobj(BYTE vol, FF_SYNC_t* sobj)
{
*sobj = NULL;
return 1;
}
/* 1:Function succeeded, 0:Could not delete due to an error */
int ff_del_syncobj(FF_SYNC_t sobj)
{
return 1;
}
/* 1:Function succeeded, 0:Could not acquire lock */
int ff_req_grant (FF_SYNC_t sobj)
{
return 1;
}
void ff_rel_grant (FF_SYNC_t sobj)
{
}

View File

@ -0,0 +1,330 @@
----------------------------------------------------------------------------
Revision history of FatFs module
----------------------------------------------------------------------------
R0.00 (February 26, 2006)
Prototype.
R0.01 (April 29, 2006)
The first release.
R0.02 (June 01, 2006)
Added FAT12 support.
Removed unbuffered mode.
Fixed a problem on small (<32M) partition.
R0.02a (June 10, 2006)
Added a configuration option (_FS_MINIMUM).
R0.03 (September 22, 2006)
Added f_rename().
Changed option _FS_MINIMUM to _FS_MINIMIZE.
R0.03a (December 11, 2006)
Improved cluster scan algorithm to write files fast.
Fixed f_mkdir() creates incorrect directory on FAT32.
R0.04 (February 04, 2007)
Added f_mkfs().
Supported multiple drive system.
Changed some interfaces for multiple drive system.
Changed f_mountdrv() to f_mount().
R0.04a (April 01, 2007)
Supported multiple partitions on a physical drive.
Added a capability of extending file size to f_lseek().
Added minimization level 3.
Fixed an endian sensitive code in f_mkfs().
R0.04b (May 05, 2007)
Added a configuration option _USE_NTFLAG.
Added FSINFO support.
Fixed DBCS name can result FR_INVALID_NAME.
Fixed short seek (<= csize) collapses the file object.
R0.05 (August 25, 2007)
Changed arguments of f_read(), f_write() and f_mkfs().
Fixed f_mkfs() on FAT32 creates incorrect FSINFO.
Fixed f_mkdir() on FAT32 creates incorrect directory.
R0.05a (February 03, 2008)
Added f_truncate() and f_utime().
Fixed off by one error at FAT sub-type determination.
Fixed btr in f_read() can be mistruncated.
Fixed cached sector is not flushed when create and close without write.
R0.06 (April 01, 2008)
Added fputc(), fputs(), fprintf() and fgets().
Improved performance of f_lseek() on moving to the same or following cluster.
R0.07 (April 01, 2009)
Merged Tiny-FatFs as a configuration option. (_FS_TINY)
Added long file name feature. (_USE_LFN)
Added multiple code page feature. (_CODE_PAGE)
Added re-entrancy for multitask operation. (_FS_REENTRANT)
Added auto cluster size selection to f_mkfs().
Added rewind option to f_readdir().
Changed result code of critical errors.
Renamed string functions to avoid name collision.
R0.07a (April 14, 2009)
Septemberarated out OS dependent code on reentrant cfg.
Added multiple sector size feature.
R0.07c (June 21, 2009)
Fixed f_unlink() can return FR_OK on error.
Fixed wrong cache control in f_lseek().
Added relative path feature.
Added f_chdir() and f_chdrive().
Added proper case conversion to extended character.
R0.07e (November 03, 2009)
Septemberarated out configuration options from ff.h to ffconf.h.
Fixed f_unlink() fails to remove a sub-directory on _FS_RPATH.
Fixed name matching error on the 13 character boundary.
Added a configuration option, _LFN_UNICODE.
Changed f_readdir() to return the SFN with always upper case on non-LFN cfg.
R0.08 (May 15, 2010)
Added a memory configuration option. (_USE_LFN = 3)
Added file lock feature. (_FS_SHARE)
Added fast seek feature. (_USE_FASTSEEK)
Changed some types on the API, XCHAR->TCHAR.
Changed .fname in the FILINFO structure on Unicode cfg.
String functions support UTF-8 encoding files on Unicode cfg.
R0.08a (August 16, 2010)
Added f_getcwd(). (_FS_RPATH = 2)
Added sector erase feature. (_USE_ERASE)
Moved file lock semaphore table from fs object to the bss.
Fixed f_mkfs() creates wrong FAT32 volume.
R0.08b (January 15, 2011)
Fast seek feature is also applied to f_read() and f_write().
f_lseek() reports required table size on creating CLMP.
Extended format syntax of f_printf().
Ignores duplicated directory separators in given path name.
R0.09 (September 06, 2011)
f_mkfs() supports multiple partition to complete the multiple partition feature.
Added f_fdisk().
R0.09a (August 27, 2012)
Changed f_open() and f_opendir() reject null object pointer to avoid crash.
Changed option name _FS_SHARE to _FS_LOCK.
Fixed assertion failure due to OS/2 EA on FAT12/16 volume.
R0.09b (January 24, 2013)
Added f_setlabel() and f_getlabel().
R0.10 (October 02, 2013)
Added selection of character encoding on the file. (_STRF_ENCODE)
Added f_closedir().
Added forced full FAT scan for f_getfree(). (_FS_NOFSINFO)
Added forced mount feature with changes of f_mount().
Improved behavior of volume auto detection.
Improved write throughput of f_puts() and f_printf().
Changed argument of f_chdrive(), f_mkfs(), disk_read() and disk_write().
Fixed f_write() can be truncated when the file size is close to 4GB.
Fixed f_open(), f_mkdir() and f_setlabel() can return incorrect value on error.
R0.10a (January 15, 2014)
Added arbitrary strings as drive number in the path name. (_STR_VOLUME_ID)
Added a configuration option of minimum sector size. (_MIN_SS)
2nd argument of f_rename() can have a drive number and it will be ignored.
Fixed f_mount() with forced mount fails when drive number is >= 1. (appeared at R0.10)
Fixed f_close() invalidates the file object without volume lock.
Fixed f_closedir() returns but the volume lock is left acquired. (appeared at R0.10)
Fixed creation of an entry with LFN fails on too many SFN collisions. (appeared at R0.07)
R0.10b (May 19, 2014)
Fixed a hard error in the disk I/O layer can collapse the directory entry.
Fixed LFN entry is not deleted when delete/rename an object with lossy converted SFN. (appeared at R0.07)
R0.10c (November 09, 2014)
Added a configuration option for the platforms without RTC. (_FS_NORTC)
Changed option name _USE_ERASE to _USE_TRIM.
Fixed volume label created by Mac OS X cannot be retrieved with f_getlabel(). (appeared at R0.09b)
Fixed a potential problem of FAT access that can appear on disk error.
Fixed null pointer dereference on attempting to delete the root direcotry. (appeared at R0.08)
R0.11 (February 09, 2015)
Added f_findfirst(), f_findnext() and f_findclose(). (_USE_FIND)
Fixed f_unlink() does not remove cluster chain of the file. (appeared at R0.10c)
Fixed _FS_NORTC option does not work properly. (appeared at R0.10c)
R0.11a (September 05, 2015)
Fixed wrong media change can lead a deadlock at thread-safe configuration.
Added code page 771, 860, 861, 863, 864, 865 and 869. (_CODE_PAGE)
Removed some code pages actually not exist on the standard systems. (_CODE_PAGE)
Fixed errors in the case conversion teble of code page 437 and 850 (ff.c).
Fixed errors in the case conversion teble of Unicode (cc*.c).
R0.12 (April 12, 2016)
Added support for exFAT file system. (_FS_EXFAT)
Added f_expand(). (_USE_EXPAND)
Changed some members in FINFO structure and behavior of f_readdir().
Added an option _USE_CHMOD.
Removed an option _WORD_ACCESS.
Fixed errors in the case conversion table of Unicode (cc*.c).
R0.12a (July 10, 2016)
Added support for creating exFAT volume with some changes of f_mkfs().
Added a file open method FA_OPEN_APPEND. An f_lseek() following f_open() is no longer needed.
f_forward() is available regardless of _FS_TINY.
Fixed f_mkfs() creates wrong volume. (appeared at R0.12)
Fixed wrong memory read in create_name(). (appeared at R0.12)
Fixed compilation fails at some configurations, _USE_FASTSEEK and _USE_FORWARD.
R0.12b (September 04, 2016)
Made f_rename() be able to rename objects with the same name but case.
Fixed an error in the case conversion teble of code page 866. (ff.c)
Fixed writing data is truncated at the file offset 4GiB on the exFAT volume. (appeared at R0.12)
Fixed creating a file in the root directory of exFAT volume can fail. (appeared at R0.12)
Fixed f_mkfs() creating exFAT volume with too small cluster size can collapse unallocated memory. (appeared at R0.12)
Fixed wrong object name can be returned when read directory at Unicode cfg. (appeared at R0.12)
Fixed large file allocation/removing on the exFAT volume collapses allocation bitmap. (appeared at R0.12)
Fixed some internal errors in f_expand() and f_lseek(). (appeared at R0.12)
R0.12c (March 04, 2017)
Improved write throughput at the fragmented file on the exFAT volume.
Made memory usage for exFAT be able to be reduced as decreasing _MAX_LFN.
Fixed successive f_getfree() can return wrong count on the FAT12/16 volume. (appeared at R0.12)
Fixed configuration option _VOLUMES cannot be set 10. (appeared at R0.10c)
R0.13 (May 21, 2017)
Changed heading character of configuration keywords "_" to "FF_".
Removed ASCII-only configuration, FF_CODE_PAGE = 1. Use FF_CODE_PAGE = 437 instead.
Added f_setcp(), run-time code page configuration. (FF_CODE_PAGE = 0)
Improved cluster allocation time on stretch a deep buried cluster chain.
Improved processing time of f_mkdir() with large cluster size by using FF_USE_LFN = 3.
Improved NoFatChain flag of the fragmented file to be set after it is truncated and got contiguous.
Fixed archive attribute is left not set when a file on the exFAT volume is renamed. (appeared at R0.12)
Fixed exFAT FAT entry can be collapsed when write or lseek operation to the existing file is done. (appeared at R0.12c)
Fixed creating a file can fail when a new cluster allocation to the exFAT directory occures. (appeared at R0.12c)
R0.13a (October 14, 2017)
Added support for UTF-8 encoding on the API. (FF_LFN_UNICODE = 2)
Added options for file name output buffer. (FF_LFN_BUF, FF_SFN_BUF).
Added dynamic memory allocation option for working buffer of f_mkfs() and f_fdisk().
Fixed f_fdisk() and f_mkfs() create the partition table with wrong CHS parameters. (appeared at R0.09)
Fixed f_unlink() can cause lost clusters at fragmented file on the exFAT volume. (appeared at R0.12c)
Fixed f_setlabel() rejects some valid characters for exFAT volume. (appeared at R0.12)
R0.13b (April 07, 2018)
Added support for UTF-32 encoding on the API. (FF_LFN_UNICODE = 3)
Added support for Unix style volume ID. (FF_STR_VOLUME_ID = 2)
Fixed accesing any object on the exFAT root directory beyond the cluster boundary can fail. (appeared at R0.12c)
Fixed f_setlabel() does not reject some invalid characters. (appeared at R0.09b)
R0.13c (October 14, 2018)
Supported stdint.h for C99 and later. (integer.h was included in ff.h)
Fixed reading a directory gets infinite loop when the last directory entry is not empty. (appeared at R0.12)
Fixed creating a sub-directory in the fragmented sub-directory on the exFAT volume collapses FAT chain of the parent directory. (appeared at R0.12)
Fixed f_getcwd() cause output buffer overrun when the buffer has a valid drive number. (appeared at R0.13b)

View File

@ -0,0 +1,21 @@
FatFs Module Source Files R0.13c
FILES
00readme.txt This file.
00history.txt Revision history.
ff.c FatFs module.
ffconf.h Configuration file of FatFs module.
ff.h Common include file for FatFs and application module.
diskio.h Common include file for FatFs and disk I/O module.
diskio.c An example of glue function to attach existing disk I/O module to FatFs.
ffunicode.c Optional Unicode utility functions.
ffsystem.c An example of optional O/S related functions.
Low level disk I/O module is not included in this archive because the FatFs
module is only a generic file system layer and it does not depend on any specific
storage device. You need to provide a low level disk I/O module written to
control the storage device that attached to the target system.

View File

@ -0,0 +1,229 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "ff.h" /* Obtains integer types */
#include "diskio.h" /* Declarations of disk functions */
/* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_RAM :
result = RAM_disk_status();
// translate the reslut code here
return stat;
case DEV_MMC :
result = MMC_disk_status();
// translate the reslut code here
return stat;
case DEV_USB :
result = USB_disk_status();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_RAM :
result = RAM_disk_initialize();
// translate the reslut code here
return stat;
case DEV_MMC :
result = MMC_disk_initialize();
// translate the reslut code here
return stat;
case DEV_USB :
result = USB_disk_initialize();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
result = RAM_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
result = MMC_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
result = USB_disk_read(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
DWORD sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
result = RAM_disk_write(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
result = MMC_disk_write(buff, sector, count);
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
result = USB_disk_write(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// Process of the command for the RAM drive
return res;
case DEV_MMC :
// Process of the command for the MMC/SD card
return res;
case DEV_USB :
// Process of the command the USB drive
return res;
}
return RES_PARERR;
}

View File

@ -0,0 +1,77 @@
/*-----------------------------------------------------------------------/
/ Low level disk interface modlue include file (C)ChaN, 2014 /
/-----------------------------------------------------------------------*/
#ifndef _DISKIO_DEFINED
#define _DISKIO_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
/* Status of Disk Functions */
typedef BYTE DSTATUS;
/* Results of Disk Functions */
typedef enum {
RES_OK = 0, /* 0: Successful */
RES_ERROR, /* 1: R/W Error */
RES_WRPRT, /* 2: Write Protected */
RES_NOTRDY, /* 3: Not Ready */
RES_PARERR /* 4: Invalid Parameter */
} DRESULT;
/*---------------------------------------*/
/* Prototypes for disk control functions */
DSTATUS disk_initialize (BYTE pdrv);
DSTATUS disk_status (BYTE pdrv);
DRESULT disk_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count);
DRESULT disk_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count);
DRESULT disk_ioctl (BYTE pdrv, BYTE cmd, void* buff);
/* Disk Status Bits (DSTATUS) */
#define STA_NOINIT 0x01 /* Drive not initialized */
#define STA_NODISK 0x02 /* No medium in the drive */
#define STA_PROTECT 0x04 /* Write protected */
/* Command code for disk_ioctrl fucntion */
/* Generic command (Used by FatFs) */
#define CTRL_SYNC 0 /* Complete pending write process (needed at FF_FS_READONLY == 0) */
#define GET_SECTOR_COUNT 1 /* Get media size (needed at FF_USE_MKFS == 1) */
#define GET_SECTOR_SIZE 2 /* Get sector size (needed at FF_MAX_SS != FF_MIN_SS) */
#define GET_BLOCK_SIZE 3 /* Get erase block size (needed at FF_USE_MKFS == 1) */
#define CTRL_TRIM 4 /* Inform device that the data on the block of sectors is no longer used (needed at FF_USE_TRIM == 1) */
/* Generic command (Not used by FatFs) */
#define CTRL_POWER 5 /* Get/Set power status */
#define CTRL_LOCK 6 /* Lock/Unlock media removal */
#define CTRL_EJECT 7 /* Eject media */
#define CTRL_FORMAT 8 /* Create physical format on the media */
/* MMC/SDC specific ioctl command */
#define MMC_GET_TYPE 10 /* Get card type */
#define MMC_GET_CSD 11 /* Get CSD */
#define MMC_GET_CID 12 /* Get CID */
#define MMC_GET_OCR 13 /* Get OCR */
#define MMC_GET_SDSTAT 14 /* Get SD status */
#define ISDIO_READ 55 /* Read data form SD iSDIO register */
#define ISDIO_WRITE 56 /* Write data to SD iSDIO register */
#define ISDIO_MRITE 57 /* Masked write data to SD iSDIO register */
/* ATA/CF specific ioctl command */
#define ATA_GET_REV 20 /* Get F/W revision */
#define ATA_GET_MODEL 21 /* Get model name */
#define ATA_GET_SN 22 /* Get serial number */
#ifdef __cplusplus
}
#endif
#endif

6566
components/fatfs/src/ff.c Normal file

File diff suppressed because it is too large Load Diff

405
components/fatfs/src/ff.h Normal file
View File

@ -0,0 +1,405 @@
/*----------------------------------------------------------------------------/
/ FatFs - Generic FAT Filesystem module R0.13c /
/-----------------------------------------------------------------------------/
/
/ Copyright (C) 2018, ChaN, all right reserved.
/
/ FatFs module is an open source software. Redistribution and use of FatFs in
/ source and binary forms, with or without modification, are permitted provided
/ that the following condition is met:
/ 1. Redistributions of source code must retain the above copyright notice,
/ this condition and the following disclaimer.
/
/ This software is provided by the copyright holder and contributors "AS IS"
/ and any warranties related to this software are DISCLAIMED.
/ The copyright owner or contributors be NOT LIABLE for any damages caused
/ by use of this software.
/
/----------------------------------------------------------------------------*/
#ifndef FF_DEFINED
#define FF_DEFINED 86604 /* Revision ID */
#ifdef __cplusplus
extern "C" {
#endif
#include "ffconf.h" /* FatFs configuration options */
#if FF_DEFINED != FFCONF_DEF
#error Wrong configuration file (ffconf.h).
#endif
/* Integer types used for FatFs API */
#if defined(_WIN32) /* Main development platform */
#define FF_INTDEF 2
#include <windows.h>
typedef unsigned __int64 QWORD;
#elif (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__cplusplus) /* C99 or later */
#define FF_INTDEF 2
#include <stdint.h>
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef uint16_t WORD; /* 16-bit unsigned integer */
typedef uint16_t WCHAR; /* 16-bit unsigned integer */
typedef uint32_t DWORD; /* 32-bit unsigned integer */
typedef uint64_t QWORD; /* 64-bit unsigned integer */
#else /* Earlier than C99 */
#define FF_INTDEF 1
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef unsigned short WORD; /* 16-bit unsigned integer */
typedef unsigned short WCHAR; /* 16-bit unsigned integer */
typedef unsigned long DWORD; /* 32-bit unsigned integer */
#endif
/* Definitions of volume management */
#if FF_MULTI_PARTITION /* Multiple partition configuration */
typedef struct {
BYTE pd; /* Physical drive number */
BYTE pt; /* Partition: 0:Auto detect, 1-4:Forced partition) */
} PARTITION;
extern PARTITION VolToPart[]; /* Volume - Partition resolution table */
#endif
#if FF_STR_VOLUME_ID
#ifndef FF_VOLUME_STRS
extern const char* VolumeStr[FF_VOLUMES]; /* User defied volume ID */
#endif
#endif
/* Type of path name strings on FatFs API */
#ifndef _INC_TCHAR
#define _INC_TCHAR
#if FF_USE_LFN && FF_LFN_UNICODE == 1 /* Unicode in UTF-16 encoding */
typedef WCHAR TCHAR;
#define _T(x) L ## x
#define _TEXT(x) L ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 2 /* Unicode in UTF-8 encoding */
typedef char TCHAR;
#define _T(x) u8 ## x
#define _TEXT(x) u8 ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 3 /* Unicode in UTF-32 encoding */
typedef DWORD TCHAR;
#define _T(x) U ## x
#define _TEXT(x) U ## x
#elif FF_USE_LFN && (FF_LFN_UNICODE < 0 || FF_LFN_UNICODE > 3)
#error Wrong FF_LFN_UNICODE setting
#else /* ANSI/OEM code in SBCS/DBCS */
typedef char TCHAR;
#define _T(x) x
#define _TEXT(x) x
#endif
#endif
/* Type of file size variables */
#if FF_FS_EXFAT
#if FF_INTDEF != 2
#error exFAT feature wants C99 or later
#endif
typedef QWORD FSIZE_t;
#else
typedef DWORD FSIZE_t;
#endif
/* Filesystem object structure (FATFS) */
typedef struct {
BYTE fs_type; /* Filesystem type (0:not mounted) */
BYTE pdrv; /* Associated physical drive */
BYTE n_fats; /* Number of FATs (1 or 2) */
BYTE wflag; /* win[] flag (b0:dirty) */
BYTE fsi_flag; /* FSINFO flags (b7:disabled, b0:dirty) */
WORD id; /* Volume mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
WORD csize; /* Cluster size [sectors] */
#if FF_MAX_SS != FF_MIN_SS
WORD ssize; /* Sector size (512, 1024, 2048 or 4096) */
#endif
#if FF_USE_LFN
WCHAR* lfnbuf; /* LFN working buffer */
#endif
#if FF_FS_EXFAT
BYTE* dirbuf; /* Directory entry block scratchpad buffer for exFAT */
#endif
#if FF_FS_REENTRANT
FF_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !FF_FS_READONLY
DWORD last_clst; /* Last allocated cluster */
DWORD free_clst; /* Number of free clusters */
#endif
#if FF_FS_RPATH
DWORD cdir; /* Current directory start cluster (0:root) */
#if FF_FS_EXFAT
DWORD cdc_scl; /* Containing directory start cluster (invalid when cdir is 0) */
DWORD cdc_size; /* b31-b8:Size of containing directory, b7-b0: Chain status */
DWORD cdc_ofs; /* Offset in the containing directory (invalid when cdir is 0) */
#endif
#endif
DWORD n_fatent; /* Number of FAT entries (number of clusters + 2) */
DWORD fsize; /* Size of an FAT [sectors] */
DWORD volbase; /* Volume base sector */
DWORD fatbase; /* FAT base sector */
DWORD dirbase; /* Root directory base sector/cluster */
DWORD database; /* Data base sector */
#if FF_FS_EXFAT
DWORD bitbase; /* Allocation bitmap base sector */
#endif
DWORD winsect; /* Current sector appearing in the win[] */
BYTE win[FF_MAX_SS]; /* Disk access window for Directory, FAT (and file data at tiny cfg) */
} FATFS;
/* Object ID and allocation information (FFOBJID) */
typedef struct {
FATFS* fs; /* Pointer to the hosting volume of this object */
WORD id; /* Hosting volume mount ID */
BYTE attr; /* Object attribute */
BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */
DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */
FSIZE_t objsize; /* Object size (valid when sclust != 0) */
#if FF_FS_EXFAT
DWORD n_cont; /* Size of first fragment - 1 (valid when stat == 3) */
DWORD n_frag; /* Size of last fragment needs to be written to FAT (valid when not zero) */
DWORD c_scl; /* Containing directory start cluster (valid when sclust != 0) */
DWORD c_size; /* b31-b8:Size of containing directory, b7-b0: Chain status (valid when c_scl != 0) */
DWORD c_ofs; /* Offset in the containing directory (valid when file object and sclust != 0) */
#endif
#if FF_FS_LOCK
UINT lockid; /* File lock ID origin from 1 (index of file semaphore table Files[]) */
#endif
} FFOBJID;
/* File object structure (FIL) */
typedef struct {
FFOBJID obj; /* Object identifier (must be the 1st member to detect invalid object pointer) */
BYTE flag; /* File status flags */
BYTE err; /* Abort flag (error code) */
FSIZE_t fptr; /* File read/write pointer (Zeroed on file open) */
DWORD clust; /* Current cluster of fpter (invalid when fptr is 0) */
DWORD sect; /* Sector number appearing in buf[] (0:invalid) */
#if !FF_FS_READONLY
DWORD dir_sect; /* Sector number containing the directory entry (not used at exFAT) */
BYTE* dir_ptr; /* Pointer to the directory entry in the win[] (not used at exFAT) */
#endif
#if FF_USE_FASTSEEK
DWORD* cltbl; /* Pointer to the cluster link map table (nulled on open, set by application) */
#endif
#if !FF_FS_TINY
BYTE buf[FF_MAX_SS]; /* File private data read/write window */
#endif
} FIL;
/* Directory object structure (FF_DIR) */
typedef struct {
FFOBJID obj; /* Object identifier */
DWORD dptr; /* Current read/write offset */
DWORD clust; /* Current cluster */
DWORD sect; /* Current sector (0:Read operation has terminated) */
BYTE* dir; /* Pointer to the directory item in the win[] */
BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */
#if FF_USE_LFN
DWORD blk_ofs; /* Offset of current entry block being processed (0xFFFFFFFF:Invalid) */
#endif
#if FF_USE_FIND
const TCHAR* pat; /* Pointer to the name matching pattern */
#endif
} FF_DIR;
/* File information structure (FILINFO) */
typedef struct {
FSIZE_t fsize; /* File size */
WORD fdate; /* Modified date */
WORD ftime; /* Modified time */
BYTE fattrib; /* File attribute */
#if FF_USE_LFN
TCHAR altname[FF_SFN_BUF + 1];/* Altenative file name */
TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
TCHAR fname[12 + 1]; /* File name */
#endif
} FILINFO;
/* File function return code (FRESULT) */
typedef enum {
FR_OK = 0, /* (0) Succeeded */
FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */
FR_INT_ERR, /* (2) Assertion failed */
FR_NOT_READY, /* (3) The physical drive cannot work */
FR_NO_FILE, /* (4) Could not find the file */
FR_NO_PATH, /* (5) Could not find the path */
FR_INVALID_NAME, /* (6) The path name format is invalid */
FR_DENIED, /* (7) Access denied due to prohibited access or directory full */
FR_EXIST, /* (8) Access denied due to prohibited access */
FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */
FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */
FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */
FR_NOT_ENABLED, /* (12) The volume has no work area */
FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any problem */
FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */
FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */
FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */
FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > FF_FS_LOCK */
FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
} FRESULT;
/*--------------------------------------------------------------*/
/* FatFs module application interface */
FRESULT f_open (FIL* fp, const TCHAR* path, BYTE mode); /* Open or create a file */
FRESULT f_close (FIL* fp); /* Close an open file object */
FRESULT f_read (FIL* fp, void* buff, UINT btr, UINT* br); /* Read data from the file */
FRESULT f_write (FIL* fp, const void* buff, UINT btw, UINT* bw); /* Write data to the file */
FRESULT f_lseek (FIL* fp, FSIZE_t ofs); /* Move file pointer of the file object */
FRESULT f_truncate (FIL* fp); /* Truncate the file */
FRESULT f_sync (FIL* fp); /* Flush cached data of the writing file */
FRESULT f_opendir (FF_DIR* dp, const TCHAR* path); /* Open a directory */
FRESULT f_closedir (FF_DIR* dp); /* Close an open directory */
FRESULT f_readdir (FF_DIR* dp, FILINFO* fno); /* Read a directory item */
FRESULT f_findfirst (FF_DIR* dp, FILINFO* fno, const TCHAR* path, const TCHAR* pattern); /* Find first file */
FRESULT f_findnext (FF_DIR* dp, FILINFO* fno); /* Find next file */
FRESULT f_mkdir (const TCHAR* path); /* Create a sub directory */
FRESULT f_unlink (const TCHAR* path); /* Delete an existing file or directory */
FRESULT f_rename (const TCHAR* path_old, const TCHAR* path_new); /* Rename/Move a file or directory */
FRESULT f_stat (const TCHAR* path, FILINFO* fno); /* Get file status */
FRESULT f_chmod (const TCHAR* path, BYTE attr, BYTE mask); /* Change attribute of a file/dir */
FRESULT f_utime (const TCHAR* path, const FILINFO* fno); /* Change timestamp of a file/dir */
FRESULT f_chdir (const TCHAR* path); /* Change current directory */
FRESULT f_chdrive (const TCHAR* path); /* Change current drive */
FRESULT f_getcwd (TCHAR* buff, UINT len); /* Get current directory */
FRESULT f_getfree (const TCHAR* path, DWORD* nclst, FATFS** fatfs); /* Get number of free clusters on the drive */
FRESULT f_getlabel (const TCHAR* path, TCHAR* label, DWORD* vsn); /* Get volume label */
FRESULT f_setlabel (const TCHAR* label); /* Set volume label */
FRESULT f_forward (FIL* fp, UINT(*func)(const BYTE*,UINT), UINT btf, UINT* bf); /* Forward data to the stream */
FRESULT f_expand (FIL* fp, FSIZE_t fsz, BYTE opt); /* Allocate a contiguous block to the file */
FRESULT f_mount (FATFS* fs, const TCHAR* path, BYTE opt); /* Mount/Unmount a logical drive */
FRESULT f_mkfs (const TCHAR* path, BYTE opt, DWORD au, void* work, UINT len); /* Create a FAT volume */
FRESULT f_fdisk (BYTE pdrv, const DWORD* szt, void* work); /* Divide a physical drive into some partitions */
FRESULT f_setcp (WORD cp); /* Set current code page */
int f_putc (TCHAR c, FIL* fp); /* Put a character to the file */
int f_puts (const TCHAR* str, FIL* cp); /* Put a string to the file */
int f_printf (FIL* fp, const TCHAR* str, ...); /* Put a formatted string to the file */
TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the file */
#define f_eof(fp) ((int)((fp)->fptr == (fp)->obj.objsize))
#define f_error(fp) ((fp)->err)
#define f_tell(fp) ((fp)->fptr)
#define f_size(fp) ((fp)->obj.objsize)
#define f_rewind(fp) f_lseek((fp), 0)
#define f_rewinddir(dp) f_readdir((dp), 0)
#define f_rmdir(path) f_unlink(path)
#define f_unmount(path) f_mount(0, path, 0)
#ifndef EOF
#define EOF (-1)
#endif
/*--------------------------------------------------------------*/
/* Additional user defined functions */
/* RTC function */
#if !FF_FS_READONLY && !FF_FS_NORTC
DWORD get_fattime (void);
#endif
/* LFN support functions */
#if FF_USE_LFN >= 1 /* Code conversion (defined in unicode.c) */
WCHAR ff_oem2uni (WCHAR oem, WORD cp); /* OEM code to Unicode conversion */
WCHAR ff_uni2oem (DWORD uni, WORD cp); /* Unicode to OEM code conversion */
DWORD ff_wtoupper (DWORD uni); /* Unicode upper-case conversion */
#endif
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
void* ff_memalloc (UINT msize); /* Allocate memory block */
void ff_memfree (void* mblock); /* Free memory block */
#endif
/* Sync functions */
#if FF_FS_REENTRANT
int ff_cre_syncobj (BYTE vol, FF_SYNC_t* sobj); /* Create a sync object */
int ff_req_grant (FF_SYNC_t sobj); /* Lock sync object */
void ff_rel_grant (FF_SYNC_t sobj); /* Unlock sync object */
int ff_del_syncobj (FF_SYNC_t sobj); /* Delete a sync object */
#endif
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* File access mode and open method flags (3rd argument of f_open) */
#define FA_READ 0x01
#define FA_WRITE 0x02
#define FA_OPEN_EXISTING 0x00
#define FA_CREATE_NEW 0x04
#define FA_CREATE_ALWAYS 0x08
#define FA_OPEN_ALWAYS 0x10
#define FA_OPEN_APPEND 0x30
/* Fast seek controls (2nd argument of f_lseek) */
#define CREATE_LINKMAP ((FSIZE_t)0 - 1)
/* Format options (2nd argument of f_mkfs) */
#define FM_FAT 0x01
#define FM_FAT32 0x02
#define FM_EXFAT 0x04
#define FM_ANY 0x07
#define FM_SFD 0x08
/* Filesystem type (FATFS.fs_type) */
#define FS_FAT12 1
#define FS_FAT16 2
#define FS_FAT32 3
#define FS_EXFAT 4
/* File attribute bits for directory entry (FILINFO.fattrib) */
#define AM_RDO 0x01 /* Read only */
#define AM_HID 0x02 /* Hidden */
#define AM_SYS 0x04 /* System */
#define AM_DIR 0x10 /* Directory */
#define AM_ARC 0x20 /* Archive */
#ifdef __cplusplus
}
#endif
#endif /* FF_DEFINED */

View File

@ -0,0 +1,325 @@
#include "sdkconfig.h"
/*---------------------------------------------------------------------------/
/ FatFs Functional Configurations
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 86604 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 0
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_STRFUNC 0
/* This option switches string functions, f_gets(), f_putc(), f_puts() and f_printf().
/
/ 0: Disable string functions.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion. */
#define FF_USE_FIND 0
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 0
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 1
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE CONFIG_FATFS_CODEPAGE
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#if defined(CONFIG_FATFS_LFN_STACK)
#define FF_USE_LFN 2
#elif defined(CONFIG_FATFS_LFN_HEAP)
#define FF_USE_LFN 3
#else /* CONFIG_FATFS_LFN_NONE */
#define FF_USE_LFN 0
#endif
#ifdef CONFIG_FATFS_MAX_LFN
#define FF_MAX_LFN CONFIG_FATFS_MAX_LFN
#endif
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() in ffsystem.c, need to be added to the project. */
#ifdef CONFIG_FATFS_API_ENCODING_UTF_8
#define FF_LFN_UNICODE 2
#elif defined(CONFIG_FATFS_API_ENCODING_UTF_16)
#define FF_LFN_UNICODE 1
#else /* CONFIG_FATFS_API_ENCODING_ANSI_OEM */
#define FF_LFN_UNICODE 0
#endif
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_STRF_ENCODE 3
/* When FF_LFN_UNICODE >= 1 with LFN enabled, string I/O functions, f_gets(),
/ f_putc(), f_puts and f_printf() convert the character encoding in it.
/ This option selects assumption of character encoding ON THE FILE to be
/ read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 2
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table needs to be defined as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 1
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ funciton will be available. */
/* SD card sector size */
#define FF_SS_SDCARD 512
/* wear_levelling library sector size */
#define FF_SS_WL CONFIG_WL_SECTOR_SIZE
#define FF_MIN_SS MIN(FF_SS_SDCARD, FF_SS_WL)
#define FF_MAX_SS MAX(FF_SS_SDCARD, FF_SS_WL)
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk. But a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY (!CONFIG_FATFS_PER_FILE_CACHE)
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 0
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2018
/* The option FF_FS_NORTC switches timestamp functiton. If the system does not have
/ any RTC function or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable
/ the timestamp function. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect at read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_LOCK CONFIG_FATFS_FS_LOCK
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
#define FF_FS_REENTRANT 1
#define FF_FS_TIMEOUT (CONFIG_FATFS_TIMEOUT_MS / portTICK_PERIOD_MS)
#define FF_SYNC_t SemaphoreHandle_t
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this function.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT and FF_SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of time tick.
/ The FF_SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
#include <sys/param.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
/* Some memory allocation functions are declared here in addition to ff.h, so that
they can be used also by external code when LFN feature is disabled.
*/
void* ff_memalloc (unsigned msize);
void ff_memfree(void*);
/*--- End of configuration options ---*/
/* Redefine names of disk IO functions to prevent name collisions */
#define disk_initialize ff_disk_initialize
#define disk_status ff_disk_status
#define disk_read ff_disk_read
#define disk_write ff_disk_write
#define disk_ioctl ff_disk_ioctl

View File

@ -0,0 +1,170 @@
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/*------------------------------------------------------------------------*/
#include "ff.h"
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
/*------------------------------------------------------------------------*/
/* Allocate a memory block */
/*------------------------------------------------------------------------*/
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null if not enough core) */
UINT msize /* Number of bytes to allocate */
)
{
return malloc(msize); /* Allocate a new memory block with POSIX API */
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do if null) */
)
{
free(mblock); /* Free the memory block with POSIX API */
}
#endif
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
//const osMutexDef_t Mutex[FF_VOLUMES]; /* Table of CMSIS-RTOS mutex */
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t* sobj /* Pointer to return the created sync object */
)
{
/* Win32 */
*sobj = CreateMutex(NULL, FALSE, NULL);
return (int)(*sobj != INVALID_HANDLE_VALUE);
/* uITRON */
// T_CSEM csem = {TA_TPRI,1,1};
// *sobj = acre_sem(&csem);
// return (int)(*sobj > 0);
/* uC/OS-II */
// OS_ERR err;
// *sobj = OSMutexCreate(0, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// *sobj = xSemaphoreCreateMutex();
// return (int)(*sobj != NULL);
/* CMSIS-RTOS */
// *sobj = osMutexCreate(&Mutex[vol]);
// return (int)(*sobj != NULL);
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
/* Win32 */
return (int)CloseHandle(sobj);
/* uITRON */
// return (int)(del_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// vSemaphoreDelete(sobj);
// return 1;
/* CMSIS-RTOS */
// return (int)(osMutexDelete(sobj) == osOK);
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
/* Win32 */
return (int)(WaitForSingleObject(sobj, FF_FS_TIMEOUT) == WAIT_OBJECT_0);
/* uITRON */
// return (int)(wai_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexPend(sobj, FF_FS_TIMEOUT, &err));
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// return (int)(xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE);
/* CMSIS-RTOS */
// return (int)(osMutexWait(sobj, FF_FS_TIMEOUT) == osOK);
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
/* Win32 */
ReleaseMutex(sobj);
/* uITRON */
// sig_sem(sobj);
/* uC/OS-II */
// OSMutexPost(sobj);
/* FreeRTOS */
// xSemaphoreGive(sobj);
/* CMSIS-RTOS */
// osMutexRelease(sobj);
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
idf_component_register(SRC_DIRS .
INCLUDE_DIRS .
REQUIRES unity test_utils vfs fatfs
EMBED_TXTFILES fatfs.img
)

View File

@ -0,0 +1,2 @@
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive
COMPONENT_EMBED_TXTFILES := fatfs.img

Binary file not shown.

View File

@ -0,0 +1,812 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include <errno.h>
#include <utime.h>
#include "unity.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "ff.h"
#include "test_fatfs_common.h"
const char* fatfs_test_hello_str = "Hello, World!\n";
const char* fatfs_test_hello_str_utf = "世界,你好!\n";
void test_fatfs_create_file_with_text(const char* name, const char* text)
{
FILE* f = fopen(name, "wb");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_TRUE(fputs(text, f) != EOF);
TEST_ASSERT_EQUAL(0, fclose(f));
}
void test_fatfs_overwrite_append(const char* filename)
{
/* Create new file with 'aaaa' */
test_fatfs_create_file_with_text(filename, "aaaa");
/* Append 'bbbb' to file */
FILE *f_a = fopen(filename, "a");
TEST_ASSERT_NOT_NULL(f_a);
TEST_ASSERT_NOT_EQUAL(EOF, fputs("bbbb", f_a));
TEST_ASSERT_EQUAL(0, fclose(f_a));
/* Read back 8 bytes from file, verify it's 'aaaabbbb' */
char buf[10] = { 0 };
FILE *f_r = fopen(filename, "r");
TEST_ASSERT_NOT_NULL(f_r);
TEST_ASSERT_EQUAL(8, fread(buf, 1, 8, f_r));
TEST_ASSERT_EQUAL_STRING_LEN("aaaabbbb", buf, 8);
/* Be sure we're at end of file */
TEST_ASSERT_EQUAL(0, fread(buf, 1, 8, f_r));
TEST_ASSERT_EQUAL(0, fclose(f_r));
/* Overwrite file with 'cccc' */
test_fatfs_create_file_with_text(filename, "cccc");
/* Verify file now only contains 'cccc' */
f_r = fopen(filename, "r");
TEST_ASSERT_NOT_NULL(f_r);
bzero(buf, sizeof(buf));
TEST_ASSERT_EQUAL(4, fread(buf, 1, 8, f_r)); // trying to read 8 bytes, only expecting 4
TEST_ASSERT_EQUAL_STRING_LEN("cccc", buf, 4);
TEST_ASSERT_EQUAL(0, fclose(f_r));
}
void test_fatfs_read_file(const char* filename)
{
FILE* f = fopen(filename, "r");
TEST_ASSERT_NOT_NULL(f);
char buf[32] = { 0 };
int cb = fread(buf, 1, sizeof(buf), f);
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str), cb);
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str, buf));
TEST_ASSERT_EQUAL(0, fclose(f));
}
void test_fatfs_read_file_utf_8(const char* filename)
{
FILE* f = fopen(filename, "r");
TEST_ASSERT_NOT_NULL(f);
char buf[64] = { 0 }; //Doubled buffer size to allow for longer UTF-8 strings
int cb = fread(buf, 1, sizeof(buf), f);
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str_utf), cb);
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str_utf, buf));
TEST_ASSERT_EQUAL(0, fclose(f));
}
void test_fatfs_pread_file(const char* filename)
{
char buf[32] = { 0 };
const int fd = open(filename, O_RDONLY);
TEST_ASSERT_NOT_EQUAL(-1, fd);
int r = pread(fd, buf, sizeof(buf), 0); // it is a regular read() with offset==0
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str, buf));
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str), r);
memset(buf, 0, sizeof(buf));
r = pread(fd, buf, sizeof(buf), 1); // offset==1
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str + 1, buf));
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str) - 1, r);
memset(buf, 0, sizeof(buf));
r = pread(fd, buf, sizeof(buf), 5); // offset==5
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str + 5, buf));
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str) - 5, r);
// regular read() should work now because pread() should not affect the current position in file
memset(buf, 0, sizeof(buf));
r = read(fd, buf, sizeof(buf)); // note that this is read() and not pread()
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str, buf));
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str), r);
memset(buf, 0, sizeof(buf));
r = pread(fd, buf, sizeof(buf), 10); // offset==10
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str + 10, buf));
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str) - 10, r);
memset(buf, 0, sizeof(buf));
r = pread(fd, buf, sizeof(buf), strlen(fatfs_test_hello_str) + 1); // offset to EOF
TEST_ASSERT_EQUAL(0, r);
TEST_ASSERT_EQUAL(0, close(fd));
}
static void test_pwrite(const char *filename, off_t offset, const char *msg)
{
const int fd = open(filename, O_WRONLY);
TEST_ASSERT_NOT_EQUAL(-1, fd);
const off_t current_pos = lseek(fd, 0, SEEK_END); // O_APPEND is not the same - jumps to the end only before write()
const int r = pwrite(fd, msg, strlen(msg), offset);
TEST_ASSERT_EQUAL(strlen(msg), r);
TEST_ASSERT_EQUAL(current_pos, lseek(fd, 0, SEEK_CUR)); // pwrite should not move the pointer
TEST_ASSERT_EQUAL(0, close(fd));
}
static void test_file_content(const char *filename, const char *msg)
{
char buf[32] = { 0 };
const int fd = open(filename, O_RDONLY);
TEST_ASSERT_NOT_EQUAL(-1, fd);
int r = read(fd, buf, sizeof(buf));
TEST_ASSERT_NOT_EQUAL(-1, r);
TEST_ASSERT_EQUAL(0, strcmp(msg, buf));
TEST_ASSERT_EQUAL(0, close(fd));
}
void test_fatfs_pwrite_file(const char *filename)
{
int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC);
TEST_ASSERT_NOT_EQUAL(-1, fd);
TEST_ASSERT_EQUAL(0, close(fd));
test_pwrite(filename, 0, "Hello");
test_file_content(filename, "Hello");
test_pwrite(filename, strlen("Hello"), ", world!");
test_file_content(filename, "Hello, world!");
test_pwrite(filename, strlen("Hello, "), "Dolly");
test_file_content(filename, "Hello, Dolly!");
}
void test_fatfs_open_max_files(const char* filename_prefix, size_t files_count)
{
FILE** files = calloc(files_count, sizeof(FILE*));
for (size_t i = 0; i < files_count; ++i) {
char name[32];
snprintf(name, sizeof(name), "%s_%d.txt", filename_prefix, i);
files[i] = fopen(name, "w");
TEST_ASSERT_NOT_NULL(files[i]);
}
/* close everything and clean up */
for (size_t i = 0; i < files_count; ++i) {
fclose(files[i]);
}
free(files);
}
void test_fatfs_lseek(const char* filename)
{
FILE* f = fopen(filename, "wb+");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_EQUAL(11, fprintf(f, "0123456789\n"));
TEST_ASSERT_EQUAL(0, fseek(f, -2, SEEK_CUR));
TEST_ASSERT_EQUAL('9', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_SET));
TEST_ASSERT_EQUAL('3', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, -3, SEEK_END));
TEST_ASSERT_EQUAL('8', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_END));
TEST_ASSERT_EQUAL(14, ftell(f));
TEST_ASSERT_EQUAL(4, fprintf(f, "abc\n"));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_END));
TEST_ASSERT_EQUAL(18, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_SET));
char buf[20];
TEST_ASSERT_EQUAL(18, fread(buf, 1, sizeof(buf), f));
const char ref_buf[] = "0123456789\n\0\0\0abc\n";
TEST_ASSERT_EQUAL_INT8_ARRAY(ref_buf, buf, sizeof(ref_buf) - 1);
TEST_ASSERT_EQUAL(0, fclose(f));
}
void test_fatfs_truncate_file(const char* filename)
{
int read = 0;
int truncated_len = 0;
const char input[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char output[sizeof(input)];
FILE* f = fopen(filename, "wb");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_EQUAL(strlen(input), fprintf(f, input));
TEST_ASSERT_EQUAL(0, fclose(f));
// Extending file beyond size is not supported
TEST_ASSERT_EQUAL(-1, truncate(filename, strlen(input) + 1));
TEST_ASSERT_EQUAL(errno, EPERM);
TEST_ASSERT_EQUAL(-1, truncate(filename, -1));
TEST_ASSERT_EQUAL(errno, EPERM);
// Truncating should succeed
const char truncated_1[] = "ABCDEFGHIJ";
truncated_len = strlen(truncated_1);
TEST_ASSERT_EQUAL(0, truncate(filename, truncated_len));
f = fopen(filename, "rb");
TEST_ASSERT_NOT_NULL(f);
memset(output, 0, sizeof(output));
read = fread(output, 1, sizeof(output), f);
TEST_ASSERT_EQUAL(truncated_len, read);
TEST_ASSERT_EQUAL_STRING_LEN(truncated_1, output, truncated_len);
TEST_ASSERT_EQUAL(0, fclose(f));
// Once truncated, the new file size should be the basis
// whether truncation should succeed or not
TEST_ASSERT_EQUAL(-1, truncate(filename, truncated_len + 1));
TEST_ASSERT_EQUAL(EPERM, errno);
TEST_ASSERT_EQUAL(-1, truncate(filename, strlen(input)));
TEST_ASSERT_EQUAL(EPERM, errno);
TEST_ASSERT_EQUAL(-1, truncate(filename, strlen(input) + 1));
TEST_ASSERT_EQUAL(EPERM, errno);
TEST_ASSERT_EQUAL(-1, truncate(filename, -1));
TEST_ASSERT_EQUAL(EPERM, errno);
// Truncating a truncated file should succeed
const char truncated_2[] = "ABCDE";
truncated_len = strlen(truncated_2);
TEST_ASSERT_EQUAL(0, truncate(filename, truncated_len));
f = fopen(filename, "rb");
TEST_ASSERT_NOT_NULL(f);
memset(output, 0, sizeof(output));
read = fread(output, 1, sizeof(output), f);
TEST_ASSERT_EQUAL(truncated_len, read);
TEST_ASSERT_EQUAL_STRING_LEN(truncated_2, output, truncated_len);
TEST_ASSERT_EQUAL(0, fclose(f));
}
void test_fatfs_stat(const char* filename, const char* root_dir)
{
struct tm tm;
tm.tm_year = 2017 - 1900;
tm.tm_mon = 11;
tm.tm_mday = 8;
tm.tm_hour = 19;
tm.tm_min = 51;
tm.tm_sec = 10;
time_t t = mktime(&tm);
printf("Setting time: %s", asctime(&tm));
struct timeval now = { .tv_sec = t };
settimeofday(&now, NULL);
test_fatfs_create_file_with_text(filename, "foo\n");
struct stat st;
TEST_ASSERT_EQUAL(0, stat(filename, &st));
time_t mtime = st.st_mtime;
struct tm mtm;
localtime_r(&mtime, &mtm);
printf("File time: %s", asctime(&mtm));
TEST_ASSERT(abs(mtime - t) < 2); // fatfs library stores time with 2 second precision
TEST_ASSERT(st.st_mode & S_IFREG);
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
memset(&st, 0, sizeof(st));
TEST_ASSERT_EQUAL(0, stat(root_dir, &st));
TEST_ASSERT(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
}
void test_fatfs_utime(const char* filename, const char* root_dir)
{
struct stat achieved_stat;
struct tm desired_tm;
struct utimbuf desired_time = {
.actime = 0, // access time is not supported
.modtime = 0,
};
time_t false_now = 0;
memset(&desired_tm, 0, sizeof(struct tm));
{
// Setting up a false actual time - used when the file is created and for modification with the current time
desired_tm.tm_mon = 10 - 1;
desired_tm.tm_mday = 31;
desired_tm.tm_year = 2018 - 1900;
desired_tm.tm_hour = 10;
desired_tm.tm_min = 35;
desired_tm.tm_sec = 23;
false_now = mktime(&desired_tm);
struct timeval now = { .tv_sec = false_now };
settimeofday(&now, NULL);
}
test_fatfs_create_file_with_text(filename, "");
// 00:00:00. January 1st, 1980 - FATFS cannot handle earlier dates
desired_tm.tm_mon = 1 - 1;
desired_tm.tm_mday = 1;
desired_tm.tm_year = 1980 - 1900;
desired_tm.tm_hour = 0;
desired_tm.tm_min = 0;
desired_tm.tm_sec = 0;
printf("Testing mod. time: %s", asctime(&desired_tm));
desired_time.modtime = mktime(&desired_tm);
TEST_ASSERT_EQUAL(0, utime(filename, &desired_time));
TEST_ASSERT_EQUAL(0, stat(filename, &achieved_stat));
TEST_ASSERT_EQUAL_UINT32(desired_time.modtime, achieved_stat.st_mtime);
// current time
TEST_ASSERT_EQUAL(0, utime(filename, NULL));
TEST_ASSERT_EQUAL(0, stat(filename, &achieved_stat));
printf("Mod. time changed to (false actual time): %s", ctime(&achieved_stat.st_mtime));
TEST_ASSERT_NOT_EQUAL(desired_time.modtime, achieved_stat.st_mtime);
TEST_ASSERT(false_now - achieved_stat.st_mtime <= 2); // two seconds of tolerance are given
// 23:59:08. December 31st, 2037
desired_tm.tm_mon = 12 - 1;
desired_tm.tm_mday = 31;
desired_tm.tm_year = 2037 - 1900;
desired_tm.tm_hour = 23;
desired_tm.tm_min = 59;
desired_tm.tm_sec = 8;
printf("Testing mod. time: %s", asctime(&desired_tm));
desired_time.modtime = mktime(&desired_tm);
TEST_ASSERT_EQUAL(0, utime(filename, &desired_time));
TEST_ASSERT_EQUAL(0, stat(filename, &achieved_stat));
TEST_ASSERT_EQUAL_UINT32(desired_time.modtime, achieved_stat.st_mtime);
//WARNING: it has the Unix Millenium bug (Y2K38)
// 00:00:00. January 1st, 1970 - FATFS cannot handle years before 1980
desired_tm.tm_mon = 1 - 1;
desired_tm.tm_mday = 1;
desired_tm.tm_year = 1970 - 1900;
desired_tm.tm_hour = 0;
desired_tm.tm_min = 0;
desired_tm.tm_sec = 0;
printf("Testing mod. time: %s", asctime(&desired_tm));
desired_time.modtime = mktime(&desired_tm);
TEST_ASSERT_EQUAL(-1, utime(filename, &desired_time));
TEST_ASSERT_EQUAL(EINVAL, errno);
}
void test_fatfs_unlink(const char* filename)
{
test_fatfs_create_file_with_text(filename, "unlink\n");
TEST_ASSERT_EQUAL(0, unlink(filename));
TEST_ASSERT_NULL(fopen(filename, "r"));
}
void test_fatfs_link_rename(const char* filename_prefix)
{
char name_copy[64];
char name_dst[64];
char name_src[64];
snprintf(name_copy, sizeof(name_copy), "%s_cpy.txt", filename_prefix);
snprintf(name_dst, sizeof(name_dst), "%s_dst.txt", filename_prefix);
snprintf(name_src, sizeof(name_src), "%s_src.txt", filename_prefix);
unlink(name_copy);
unlink(name_dst);
unlink(name_src);
FILE* f = fopen(name_src, "w+");
TEST_ASSERT_NOT_NULL(f);
const char* str = "0123456789";
for (int i = 0; i < 4000; ++i) {
TEST_ASSERT_NOT_EQUAL(EOF, fputs(str, f));
}
TEST_ASSERT_EQUAL(0, fclose(f));
TEST_ASSERT_EQUAL(0, link(name_src, name_copy));
FILE* fcopy = fopen(name_copy, "r");
TEST_ASSERT_NOT_NULL(fcopy);
TEST_ASSERT_EQUAL(0, fseek(fcopy, 0, SEEK_END));
TEST_ASSERT_EQUAL(40000, ftell(fcopy));
TEST_ASSERT_EQUAL(0, fclose(fcopy));
TEST_ASSERT_EQUAL(0, rename(name_copy, name_dst));
TEST_ASSERT_NULL(fopen(name_copy, "r"));
FILE* fdst = fopen(name_dst, "r");
TEST_ASSERT_NOT_NULL(fdst);
TEST_ASSERT_EQUAL(0, fseek(fdst, 0, SEEK_END));
TEST_ASSERT_EQUAL(40000, ftell(fdst));
TEST_ASSERT_EQUAL(0, fclose(fdst));
}
void test_fatfs_mkdir_rmdir(const char* filename_prefix)
{
char name_dir1[64];
char name_dir2[64];
char name_dir2_file[64];
snprintf(name_dir1, sizeof(name_dir1), "%s1", filename_prefix);
snprintf(name_dir2, sizeof(name_dir2), "%s2", filename_prefix);
snprintf(name_dir2_file, sizeof(name_dir2_file), "%s2/1.txt", filename_prefix);
TEST_ASSERT_EQUAL(0, mkdir(name_dir1, 0755));
struct stat st;
TEST_ASSERT_EQUAL(0, stat(name_dir1, &st));
TEST_ASSERT_TRUE(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(0, rmdir(name_dir1));
TEST_ASSERT_EQUAL(-1, stat(name_dir1, &st));
TEST_ASSERT_EQUAL(0, mkdir(name_dir2, 0755));
test_fatfs_create_file_with_text(name_dir2_file, "foo\n");
TEST_ASSERT_EQUAL(0, stat(name_dir2, &st));
TEST_ASSERT_TRUE(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(0, stat(name_dir2_file, &st));
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
TEST_ASSERT_TRUE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(-1, rmdir(name_dir2));
TEST_ASSERT_EQUAL(0, unlink(name_dir2_file));
TEST_ASSERT_EQUAL(0, rmdir(name_dir2));
}
void test_fatfs_can_opendir(const char* path)
{
char name_dir_file[64];
const char * file_name = "test_opd.txt";
snprintf(name_dir_file, sizeof(name_dir_file), "%s/%s", path, file_name);
unlink(name_dir_file);
test_fatfs_create_file_with_text(name_dir_file, "test_opendir\n");
DIR* dir = opendir(path);
TEST_ASSERT_NOT_NULL(dir);
bool found = false;
while (true) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
if (strcasecmp(de->d_name, file_name) == 0) {
found = true;
break;
}
}
TEST_ASSERT_TRUE(found);
TEST_ASSERT_EQUAL(0, closedir(dir));
unlink(name_dir_file);
}
void test_fatfs_opendir_readdir_rewinddir(const char* dir_prefix)
{
char name_dir_inner_file[64];
char name_dir_inner[64];
char name_dir_file3[64];
char name_dir_file2[64];
char name_dir_file1[64];
snprintf(name_dir_inner_file, sizeof(name_dir_inner_file), "%s/inner/3.txt", dir_prefix);
snprintf(name_dir_inner, sizeof(name_dir_inner), "%s/inner", dir_prefix);
snprintf(name_dir_file3, sizeof(name_dir_file2), "%s/boo.bin", dir_prefix);
snprintf(name_dir_file2, sizeof(name_dir_file2), "%s/2.txt", dir_prefix);
snprintf(name_dir_file1, sizeof(name_dir_file1), "%s/1.txt", dir_prefix);
unlink(name_dir_inner_file);
rmdir(name_dir_inner);
unlink(name_dir_file1);
unlink(name_dir_file2);
unlink(name_dir_file3);
rmdir(dir_prefix);
TEST_ASSERT_EQUAL(0, mkdir(dir_prefix, 0755));
test_fatfs_create_file_with_text(name_dir_file1, "1\n");
test_fatfs_create_file_with_text(name_dir_file2, "2\n");
test_fatfs_create_file_with_text(name_dir_file3, "\01\02\03");
TEST_ASSERT_EQUAL(0, mkdir(name_dir_inner, 0755));
test_fatfs_create_file_with_text(name_dir_inner_file, "3\n");
DIR* dir = opendir(dir_prefix);
TEST_ASSERT_NOT_NULL(dir);
int count = 0;
const char* names[4];
while(count < 4) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
printf("found '%s'\n", de->d_name);
if (strcasecmp(de->d_name, "1.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "1.txt";
++count;
} else if (strcasecmp(de->d_name, "2.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "2.txt";
++count;
} else if (strcasecmp(de->d_name, "inner") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_DIR);
names[count] = "inner";
++count;
} else if (strcasecmp(de->d_name, "boo.bin") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "boo.bin";
++count;
} else {
TEST_FAIL_MESSAGE("unexpected directory entry");
}
}
TEST_ASSERT_EQUAL(count, 4);
rewinddir(dir);
struct dirent* de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[0]));
seekdir(dir, 3);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[3]));
seekdir(dir, 1);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[1]));
seekdir(dir, 2);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[2]));
TEST_ASSERT_EQUAL(0, closedir(dir));
}
void test_fatfs_opendir_readdir_rewinddir_utf_8(const char* dir_prefix)
{
char name_dir_inner_file[64];
char name_dir_inner[64];
char name_dir_file3[64];
char name_dir_file2[64];
char name_dir_file1[64];
snprintf(name_dir_inner_file, sizeof(name_dir_inner_file), "%s/内部目录/内部文件.txt", dir_prefix);
snprintf(name_dir_inner, sizeof(name_dir_inner), "%s/内部目录", dir_prefix);
snprintf(name_dir_file3, sizeof(name_dir_file3), "%s/文件三.bin", dir_prefix);
snprintf(name_dir_file2, sizeof(name_dir_file2), "%s/文件二.txt", dir_prefix);
snprintf(name_dir_file1, sizeof(name_dir_file1), "%s/文件一.txt", dir_prefix);
unlink(name_dir_inner_file);
rmdir(name_dir_inner);
unlink(name_dir_file1);
unlink(name_dir_file2);
unlink(name_dir_file3);
rmdir(dir_prefix);
TEST_ASSERT_EQUAL(0, mkdir(dir_prefix, 0755));
test_fatfs_create_file_with_text(name_dir_file1, "一号\n");
test_fatfs_create_file_with_text(name_dir_file2, "二号\n");
test_fatfs_create_file_with_text(name_dir_file3, "\0\0\0");
TEST_ASSERT_EQUAL(0, mkdir(name_dir_inner, 0755));
test_fatfs_create_file_with_text(name_dir_inner_file, "三号\n");
DIR* dir = opendir(dir_prefix);
TEST_ASSERT_NOT_NULL(dir);
int count = 0;
const char* names[4];
while(count < 4) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
printf("found '%s'\n", de->d_name);
if (strcasecmp(de->d_name, "文件一.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "文件一.txt";
++count;
} else if (strcasecmp(de->d_name, "文件二.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "文件二.txt";
++count;
} else if (strcasecmp(de->d_name, "内部目录") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_DIR);
names[count] = "内部目录";
++count;
} else if (strcasecmp(de->d_name, "文件三.bin") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "文件三.bin";
++count;
} else {
TEST_FAIL_MESSAGE("unexpected directory entry");
}
}
TEST_ASSERT_EQUAL(count, 4);
rewinddir(dir);
struct dirent* de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[0]));
seekdir(dir, 3);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[3]));
seekdir(dir, 1);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[1]));
seekdir(dir, 2);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[2]));
TEST_ASSERT_EQUAL(0, closedir(dir));
}
typedef struct {
const char* filename;
bool write;
size_t word_count;
int seed;
SemaphoreHandle_t done;
int result;
} read_write_test_arg_t;
#define READ_WRITE_TEST_ARG_INIT(name, seed_) \
{ \
.filename = name, \
.seed = seed_, \
.word_count = 8192, \
.write = true, \
.done = xSemaphoreCreateBinary() \
}
static void read_write_task(void* param)
{
read_write_test_arg_t* args = (read_write_test_arg_t*) param;
FILE* f = fopen(args->filename, args->write ? "wb" : "rb");
if (f == NULL) {
args->result = ESP_ERR_NOT_FOUND;
goto done;
}
srand(args->seed);
for (size_t i = 0; i < args->word_count; ++i) {
uint32_t val = i * 77;
if (args->write) {
int cnt = fwrite(&val, sizeof(val), 1, f);
if (cnt != 1) {
ets_printf("E(w): i=%d, cnt=%d val=%d\n\n", i, cnt, val);
args->result = ESP_FAIL;
goto close;
}
} else {
uint32_t rval;
int cnt = fread(&rval, sizeof(rval), 1, f);
if (cnt != 1 || rval != val) {
ets_printf("E(r): i=%d, cnt=%d rval=%d val=%d\n\n", i, cnt, rval, val);
args->result = ESP_FAIL;
goto close;
}
}
}
args->result = ESP_OK;
close:
fclose(f);
done:
xSemaphoreGive(args->done);
vTaskDelay(1);
vTaskDelete(NULL);
}
void test_fatfs_concurrent(const char* filename_prefix)
{
char names[4][64];
for (size_t i = 0; i < 4; ++i) {
snprintf(names[i], sizeof(names[i]), "%s%d", filename_prefix, i + 1);
unlink(names[i]);
}
read_write_test_arg_t args1 = READ_WRITE_TEST_ARG_INIT(names[0], 1);
read_write_test_arg_t args2 = READ_WRITE_TEST_ARG_INIT(names[1], 2);
printf("writing f1 and f2\n");
const int cpuid_0 = 0;
const int cpuid_1 = portNUM_PROCESSORS - 1;
const int stack_size = 4096;
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
args1.write = false;
args2.write = false;
read_write_test_arg_t args3 = READ_WRITE_TEST_ARG_INIT(names[2], 3);
read_write_test_arg_t args4 = READ_WRITE_TEST_ARG_INIT(names[3], 4);
printf("reading f1 and f2, writing f3 and f4\n");
xTaskCreatePinnedToCore(&read_write_task, "rw3", stack_size, &args3, 3, NULL, cpuid_1);
xTaskCreatePinnedToCore(&read_write_task, "rw4", stack_size, &args4, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
xSemaphoreTake(args3.done, portMAX_DELAY);
printf("f3 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
xSemaphoreTake(args4.done, portMAX_DELAY);
printf("f4 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
vSemaphoreDelete(args1.done);
vSemaphoreDelete(args2.done);
vSemaphoreDelete(args3.done);
vSemaphoreDelete(args4.done);
}
void test_fatfs_rw_speed(const char* filename, void* buf, size_t buf_size, size_t file_size, bool is_write)
{
const size_t buf_count = file_size / buf_size;
FILE* f = fopen(filename, (is_write) ? "wb" : "rb");
TEST_ASSERT_NOT_NULL(f);
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
for (size_t n = 0; n < buf_count; ++n) {
if (is_write) {
TEST_ASSERT_EQUAL(buf_size, write(fileno(f), buf, buf_size));
} else {
if (read(fileno(f), buf, buf_size) != buf_size) {
printf("reading at n=%d, eof=%d", n, feof(f));
TEST_FAIL();
}
}
}
struct timeval tv_end;
gettimeofday(&tv_end, NULL);
TEST_ASSERT_EQUAL(0, fclose(f));
float t_s = tv_end.tv_sec - tv_start.tv_sec + 1e-6f * (tv_end.tv_usec - tv_start.tv_usec);
printf("%s %d bytes (block size %d) in %.3fms (%.3f MB/s)\n",
(is_write)?"Wrote":"Read", file_size, buf_size, t_s * 1e3,
file_size / (1024.0f * 1024.0f * t_s));
}

View File

@ -0,0 +1,73 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file test_fatfs_common.h
* @brief Common routines for FAT-on-SDMMC and FAT-on-WL tests
*/
#define HEAP_SIZE_CAPTURE(heap_size) \
heap_size = esp_get_free_heap_size();
#define HEAP_SIZE_CHECK(heap_size, tolerance) \
do {\
size_t final_heap_size = esp_get_free_heap_size(); \
if (final_heap_size < heap_size - tolerance) { \
printf("Initial heap size: %d, final: %d, diff=%d\n", heap_size, final_heap_size, heap_size - final_heap_size); \
} \
} while(0)
const char* fatfs_test_hello_str;
const char* fatfs_test_hello_str_utf;
void test_fatfs_create_file_with_text(const char* name, const char* text);
void test_fatfs_overwrite_append(const char* filename);
void test_fatfs_read_file(const char* filename);
void test_fatfs_read_file_utf_8(const char* filename);
void test_fatfs_pread_file(const char* filename);
void test_fatfs_pwrite_file(const char* filename);
void test_fatfs_open_max_files(const char* filename_prefix, size_t files_count);
void test_fatfs_lseek(const char* filename);
void test_fatfs_truncate_file(const char* path);
void test_fatfs_stat(const char* filename, const char* root_dir);
void test_fatfs_utime(const char* filename, const char* root_dir);
void test_fatfs_unlink(const char* filename);
void test_fatfs_link_rename(const char* filename_prefix);
void test_fatfs_concurrent(const char* filename_prefix);
void test_fatfs_mkdir_rmdir(const char* filename_prefix);
void test_fatfs_can_opendir(const char* path);
void test_fatfs_opendir_readdir_rewinddir(const char* dir_prefix);
void test_fatfs_opendir_readdir_rewinddir_utf_8(const char* dir_prefix);
void test_fatfs_rw_speed(const char* filename, void* buf, size_t buf_size, size_t file_size, bool write);

View File

@ -0,0 +1,363 @@
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include "unity.h"
#include "test_utils.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "test_fatfs_common.h"
#include "esp_partition.h"
#include "ff.h"
static void test_setup(size_t max_files)
{
extern const char fatfs_start[] asm("_binary_fatfs_img_start");
extern const char fatfs_end[] asm("_binary_fatfs_img_end");
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = false,
.max_files = max_files
};
const esp_partition_t* part = get_test_data_partition();
TEST_ASSERT(part->size >= (fatfs_end - fatfs_start - 1));
// spi_flash_mmap_handle_t mmap_handle;
// const void* mmap_ptr;
// TEST_ESP_OK(esp_partition_mmap(part, 0, part->size, SPI_FLASH_MMAP_DATA, &mmap_ptr, &mmap_handle));
// bool content_valid = memcmp(fatfs_start, mmap_ptr, part->size) == 0;
// spi_flash_munmap(mmap_handle);
size_t max_space_size = MIN(part->size, fatfs_end - fatfs_start - 1);
bool content_valid = true;
char *buf = malloc(4096);
TEST_ASSERT_NOT_NULL(buf);
for (size_t i = 0; i < max_space_size; i += 4096) {
size_t bytes = MIN(4096, max_space_size - i);
TEST_ESP_OK(esp_partition_read(part, i, buf, bytes));
if (memcmp(fatfs_start + i, buf, bytes)) {
content_valid = false;
break;
}
}
free(buf);
if (!content_valid) {
printf("Copying fatfs.img into test partition...\n");
esp_partition_erase_range(part, 0, part->size);
for (int i = 0; i < part->size; i+= SPI_FLASH_SEC_SIZE) {
ESP_ERROR_CHECK( esp_partition_write(part, i, fatfs_start + i, SPI_FLASH_SEC_SIZE) );
}
}
TEST_ESP_OK(esp_vfs_fat_rawflash_mount("/spiflash", "flash_test", &mount_config));
}
static void test_teardown(void)
{
TEST_ESP_OK(esp_vfs_fat_rawflash_unmount("/spiflash","flash_test"));
}
TEST_CASE("(raw) can read file", "[fatfs]")
{
test_setup(5);
FILE* f = fopen("/spiflash/hello.txt", "r");
TEST_ASSERT_NOT_NULL(f);
char buf[32] = { 0 };
int cb = fread(buf, 1, sizeof(buf), f);
TEST_ASSERT_EQUAL(strlen(fatfs_test_hello_str), cb);
TEST_ASSERT_EQUAL(0, strcmp(fatfs_test_hello_str, buf));
TEST_ASSERT_EQUAL(0, fclose(f));
test_teardown();
}
TEST_CASE("(raw) can open maximum number of files", "[fatfs]")
{
size_t max_files = FOPEN_MAX - 3; /* account for stdin, stdout, stderr */
test_setup(max_files);
FILE** files = calloc(max_files, sizeof(FILE*));
for (size_t i = 0; i < max_files; ++i) {
char name[32];
snprintf(name, sizeof(name), "/spiflash/f/%d.txt", i + 1);
files[i] = fopen(name, "r");
TEST_ASSERT_NOT_NULL(files[i]);
}
/* close everything and clean up */
for (size_t i = 0; i < max_files; ++i) {
fclose(files[i]);
}
free(files);
test_teardown();
}
TEST_CASE("(raw) can lseek", "[fatfs]")
{
test_setup(5);
FILE* f = fopen("/spiflash/hello.txt", "r");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_EQUAL(0, fseek(f, 2, SEEK_CUR));
TEST_ASSERT_EQUAL('l', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 4, SEEK_SET));
TEST_ASSERT_EQUAL('o', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, -5, SEEK_END));
TEST_ASSERT_EQUAL('r', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_END));
TEST_ASSERT_EQUAL(17, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_END));
TEST_ASSERT_EQUAL(14, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_SET));
test_teardown();
}
TEST_CASE("(raw) stat returns correct values", "[fatfs]")
{
test_setup(5);
struct tm tm;
tm.tm_year = 2018 - 1900;
tm.tm_mon = 5; // Note: month can be 0-11 & not 1-12
tm.tm_mday = 13;
tm.tm_hour = 11;
tm.tm_min = 2;
tm.tm_sec = 10;
time_t t = mktime(&tm);
printf("Reference time: %s", asctime(&tm));
struct stat st;
TEST_ASSERT_EQUAL(0, stat("/spiflash/stat.txt", &st));
time_t mtime = st.st_mtime;
struct tm mtm;
localtime_r(&mtime, &mtm);
printf("File time: %s", asctime(&mtm));
TEST_ASSERT(mtime > t); // Modification time should be in future wrt ref time
TEST_ASSERT(st.st_mode & S_IFREG);
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
memset(&st, 0, sizeof(st));
TEST_ASSERT_EQUAL(0, stat("/spiflash", &st));
TEST_ASSERT(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
test_teardown();
}
TEST_CASE("(raw) can opendir root directory of FS", "[fatfs]")
{
test_setup(5);
DIR* dir = opendir("/spiflash");
TEST_ASSERT_NOT_NULL(dir);
bool found = false;
while (true) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
if (strcasecmp(de->d_name, "test_opd.txt") == 0) {
found = true;
break;
}
}
TEST_ASSERT_TRUE(found);
TEST_ASSERT_EQUAL(0, closedir(dir));
test_teardown();
}
TEST_CASE("(raw) opendir, readdir, rewinddir, seekdir work as expected", "[fatfs]")
{
test_setup(5);
DIR* dir = opendir("/spiflash/dir");
TEST_ASSERT_NOT_NULL(dir);
int count = 0;
const char* names[4];
while(count < 4) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
printf("found '%s'\n", de->d_name);
if (strcasecmp(de->d_name, "1.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "1.txt";
++count;
} else if (strcasecmp(de->d_name, "2.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "2.txt";
++count;
} else if (strcasecmp(de->d_name, "inner") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_DIR);
names[count] = "inner";
++count;
} else if (strcasecmp(de->d_name, "boo.bin") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "boo.bin";
++count;
} else {
TEST_FAIL_MESSAGE("unexpected directory entry");
}
}
TEST_ASSERT_EQUAL(count, 4);
rewinddir(dir);
struct dirent* de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[0]));
seekdir(dir, 3);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[3]));
seekdir(dir, 1);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[1]));
seekdir(dir, 2);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[2]));
TEST_ASSERT_EQUAL(0, closedir(dir));
test_teardown();
}
typedef struct {
const char* filename;
size_t word_count;
int seed;
int val;
SemaphoreHandle_t done;
int result;
} read_test_arg_t;
#define READ_TEST_ARG_INIT(name, seed_, val_) \
{ \
.filename = name, \
.seed = seed_, \
.word_count = 8000, \
.val = val_, \
.done = xSemaphoreCreateBinary() \
}
static void read_task(void* param)
{
read_test_arg_t* args = (read_test_arg_t*) param;
FILE* f = fopen(args->filename, "rb");
if (f == NULL) {
args->result = ESP_ERR_NOT_FOUND;
goto done;
}
srand(args->seed);
for (size_t i = 0; i < args->word_count; ++i) {
uint32_t rval;
int cnt = fread(&rval, sizeof(rval), 1, f);
if (cnt != 1 || rval != args->val) {
ets_printf("E(r): i=%d, cnt=%d rval=%d val=%d\n\n", i, cnt, rval, args->val);
args->result = ESP_FAIL;
goto close;
}
}
args->result = ESP_OK;
close:
fclose(f);
done:
xSemaphoreGive(args->done);
vTaskDelay(1);
vTaskDelete(NULL);
}
TEST_CASE("(raw) multiple tasks can use same volume", "[fatfs]")
{
test_setup(5);
char names[4][64];
for (size_t i = 0; i < 4; ++i) {
snprintf(names[i], sizeof(names[i]), "/spiflash/ccrnt/%d.txt", i + 1);
}
read_test_arg_t args1 = READ_TEST_ARG_INIT(names[0], 1, 0x31313131);
read_test_arg_t args2 = READ_TEST_ARG_INIT(names[1], 2, 0x32323232);
read_test_arg_t args3 = READ_TEST_ARG_INIT(names[2], 3, 0x33333333);
read_test_arg_t args4 = READ_TEST_ARG_INIT(names[3], 4, 0x34343434);
const int cpuid_0 = 0;
const int cpuid_1 = portNUM_PROCESSORS - 1;
const int stack_size = 4096;
printf("reading files 1.txt 2.txt 3.txt 4.txt \n");
xTaskCreatePinnedToCore(&read_task, "r1", stack_size, &args1, 3, NULL, cpuid_1);
xTaskCreatePinnedToCore(&read_task, "r2", stack_size, &args2, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_task, "r3", stack_size, &args3, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_task, "r4", stack_size, &args4, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("1.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("2.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
xSemaphoreTake(args3.done, portMAX_DELAY);
printf("3.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
xSemaphoreTake(args4.done, portMAX_DELAY);
printf("4.txt done\n");
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
vSemaphoreDelete(args1.done);
vSemaphoreDelete(args2.done);
vSemaphoreDelete(args3.done);
vSemaphoreDelete(args4.done);
test_teardown();
}
TEST_CASE("(raw) read speed test", "[fatfs][timeout=60]")
{
test_setup(5);
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
const size_t file_size = 256 * 1024;
const char* file = "/spiflash/256k.bin";
test_fatfs_rw_speed(file, buf, 4 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 8 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 16 * 1024, file_size, false);
free(buf);
test_teardown();
}

View File

@ -0,0 +1,304 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if 0
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include "unity.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/sdmmc_defs.h"
#include "sdmmc_cmd.h"
#include "ff.h"
#include "test_fatfs_common.h"
#include "soc/soc_caps.h"
#ifdef SOC_SDMMC_HOST_SUPPORTED
#include "driver/sdmmc_host.h"
static void test_setup(void)
{
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5,
.allocation_unit_size = 16 * 1024
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
}
static void test_teardown(void)
{
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
}
static const char* test_filename = "/sdcard/hello.txt";
TEST_CASE("Mount fails cleanly without card inserted", "[fatfs][sd][ignore]")
{
size_t heap_size;
HEAP_SIZE_CAPTURE(heap_size);
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = false,
.max_files = 5
};
for (int i = 0; i < 3; ++i) {
printf("Initializing card, attempt %d\n", i);
esp_err_t err = esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL);
printf("err=%d\n", err);
TEST_ESP_ERR(ESP_ERR_TIMEOUT, err);
}
HEAP_SIZE_CHECK(heap_size, 0);
}
TEST_CASE("(SD) can create and write file", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_create_file_with_text(test_filename, fatfs_test_hello_str);
test_teardown();
}
TEST_CASE("(SD) can read file", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_create_file_with_text(test_filename, fatfs_test_hello_str);
test_fatfs_read_file(test_filename);
test_teardown();
}
TEST_CASE("(SD) can read file with pread()", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_create_file_with_text(test_filename, fatfs_test_hello_str);
test_fatfs_pread_file(test_filename);
test_teardown();
}
TEST_CASE("(SD) pwrite() works well", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_pwrite_file(test_filename);
test_teardown();
}
TEST_CASE("(SD) overwrite and append file", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_overwrite_append(test_filename);
test_teardown();
}
TEST_CASE("(SD) can lseek", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_lseek("/sdcard/seek.txt");
test_teardown();
}
TEST_CASE("(SD) can truncate", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_truncate_file("/sdcard/truncate.txt");
test_teardown();
}
TEST_CASE("(SD) stat returns correct values", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_stat("/sdcard/stat.txt", "/sdcard");
test_teardown();
}
TEST_CASE("(SD) utime sets modification time", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_utime("/sdcard/utime.txt", "/sdcard");
test_teardown();
}
TEST_CASE("(SD) unlink removes a file", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_unlink("/sdcard/unlink.txt");
test_teardown();
}
TEST_CASE("(SD) link copies a file, rename moves a file", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_link_rename("/sdcard/link");
test_teardown();
}
TEST_CASE("(SD) can create and remove directories", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_mkdir_rmdir("/sdcard/dir");
test_teardown();
}
TEST_CASE("(SD) can opendir root directory of FS", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_can_opendir("/sdcard");
test_teardown();
}
TEST_CASE("(SD) opendir, readdir, rewinddir, seekdir work as expected", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_opendir_readdir_rewinddir("/sdcard/dir");
test_teardown();
}
TEST_CASE("(SD) multiple tasks can use same volume", "[fatfs][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_concurrent("/sdcard/f");
test_teardown();
}
static void speed_test(void* buf, size_t buf_size, size_t file_size, bool write);
TEST_CASE("(SD) write/read speed test", "[fatfs][sd][test_env=UT_T1_SDMODE][timeout=60]")
{
size_t heap_size;
HEAP_SIZE_CAPTURE(heap_size);
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
esp_fill_random(buf, buf_size);
const size_t file_size = 1 * 1024 * 1024;
speed_test(buf, 4 * 1024, file_size, true);
speed_test(buf, 8 * 1024, file_size, true);
speed_test(buf, 16 * 1024, file_size, true);
speed_test(buf, 4 * 1024, file_size, false);
speed_test(buf, 8 * 1024, file_size, false);
speed_test(buf, 16 * 1024, file_size, false);
free(buf);
HEAP_SIZE_CHECK(heap_size, 0);
}
static void speed_test(void* buf, size_t buf_size, size_t file_size, bool write)
{
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = write,
.max_files = 5,
.allocation_unit_size = 64 * 1024
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
test_fatfs_rw_speed("/sdcard/4mb.bin", buf, buf_size, file_size, write);
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
}
TEST_CASE("(SD) mount two FAT partitions, SDMMC and WL, at the same time", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
const char* filename_sd = "/sdcard/sd.txt";
const char* filename_wl = "/spiflash/wl.txt";
const char* str_sd = "this is sd\n";
const char* str_wl = "this is spiflash\n";
/* Erase flash before the firs use */
const esp_partition_t *test_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "flash_test");
esp_partition_erase_range(test_partition, 0, test_partition->size);
printf("Partition erased: addr- 0x%08x, size- 0x%08x\n", test_partition->address, test_partition->size);
/* Mount FATFS in SD can WL at the same time. Create a file on each FS */
wl_handle_t wl_handle = WL_INVALID_HANDLE;
test_setup();
TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &wl_handle));
unlink(filename_sd);
unlink(filename_wl);
test_fatfs_create_file_with_text(filename_sd, str_sd);
test_fatfs_create_file_with_text(filename_wl, str_wl);
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", wl_handle));
test_teardown();
/* Check that the file "sd.txt" was created on FS in SD, and has the right data */
test_setup();
TEST_ASSERT_NULL(fopen(filename_wl, "r"));
FILE* f = fopen(filename_sd, "r");
TEST_ASSERT_NOT_NULL(f);
char buf[64];
TEST_ASSERT_NOT_NULL(fgets(buf, sizeof(buf) - 1, f));
TEST_ASSERT_EQUAL(0, strcmp(buf, str_sd));
fclose(f);
test_teardown();
/* Check that the file "wl.txt" was created on FS in WL, and has the right data */
TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &wl_handle));
TEST_ASSERT_NULL(fopen(filename_sd, "r"));
f = fopen(filename_wl, "r");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_NOT_NULL(fgets(buf, sizeof(buf) - 1, f));
TEST_ASSERT_EQUAL(0, strcmp(buf, str_wl));
fclose(f);
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", wl_handle));
}
/*
* In FatFs menuconfig, set CONFIG_FATFS_API_ENCODING to UTF-8 and set the
* Codepage to CP936 (Simplified Chinese) in order to run the following tests.
* Ensure that the text editor is UTF-8 compatible when compiling these tests.
*/
#if defined(CONFIG_FATFS_API_ENCODING_UTF_8) && (CONFIG_FATFS_CODEPAGE == 936)
static const char* test_filename_utf_8 = "/sdcard/测试文件.txt";
TEST_CASE("(SD) can read file using UTF-8 encoded strings", "[fatfs][sd][test_env=UT_T1_SDMODE]")
{
test_setup();
test_fatfs_create_file_with_text(test_filename_utf_8, fatfs_test_hello_str_utf);
test_fatfs_read_file_utf_8(test_filename_utf_8);
test_teardown();
}
TEST_CASE("(SD) opendir, readdir, rewinddir, seekdir work as expected using UTF-8 encoded strings", "[fatfs][ignore]")
{
test_setup();
test_fatfs_opendir_readdir_rewinddir_utf_8("/sdcard/目录");
test_teardown();
}
#endif // CONFIG_FATFS_API_ENCODING_UTF_8 && CONFIG_FATFS_CODEPAGE == 936
#endif
#endif

View File

@ -0,0 +1,225 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include "unity.h"
#include "test_utils.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "test_fatfs_common.h"
#include "wear_levelling.h"
#include "esp_partition.h"
static wl_handle_t s_test_wl_handle;
static void test_setup(void)
{
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &s_test_wl_handle));
}
static void test_teardown(void)
{
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", s_test_wl_handle));
}
TEST_CASE("(WL) can format partition", "[fatfs][wear_levelling]")
{
const esp_partition_t* part = get_test_data_partition();
esp_partition_erase_range(part, 0, part->size);
test_setup();
test_teardown();
}
TEST_CASE("(WL) can create and write file", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_create_file_with_text("/spiflash/hello.txt", fatfs_test_hello_str);
test_teardown();
}
TEST_CASE("(WL) can read file", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_create_file_with_text("/spiflash/hello.txt", fatfs_test_hello_str);
test_fatfs_read_file("/spiflash/hello.txt");
test_teardown();
}
TEST_CASE("(WL) can read file with pread", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_create_file_with_text("/spiflash/hello.txt", fatfs_test_hello_str);
test_fatfs_pread_file("/spiflash/hello.txt");
test_teardown();
}
TEST_CASE("(WL) pwrite() works well", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_pwrite_file("/spiflash/hello.txt");
test_teardown();
}
TEST_CASE("(WL) can open maximum number of files", "[fatfs][wear_levelling]")
{
size_t max_files = FOPEN_MAX - 3; /* account for stdin, stdout, stderr */
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = max_files
};
TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &s_test_wl_handle));
test_fatfs_open_max_files("/spiflash/f", max_files);
TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", s_test_wl_handle));
}
TEST_CASE("(WL) overwrite and append file", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_overwrite_append("/spiflash/hello.txt");
test_teardown();
}
TEST_CASE("(WL) can lseek", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_lseek("/spiflash/seek.txt");
test_teardown();
}
TEST_CASE("(WL) can truncate", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_truncate_file("/spiflash/truncate.txt");
test_teardown();
}
TEST_CASE("(WL) stat returns correct values", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_stat("/spiflash/stat.txt", "/spiflash");
test_teardown();
}
TEST_CASE("(WL) utime sets modification time", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_utime("/spiflash/utime.txt", "/spiflash");
test_teardown();
}
TEST_CASE("(WL) unlink removes a file", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_unlink("/spiflash/unlink.txt");
test_teardown();
}
TEST_CASE("(WL) link copies a file, rename moves a file", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_link_rename("/spiflash/link");
test_teardown();
}
TEST_CASE("(WL) can create and remove directories", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_mkdir_rmdir("/spiflash/dir");
test_teardown();
}
TEST_CASE("(WL) can opendir root directory of FS", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_can_opendir("/spiflash");
test_teardown();
}
TEST_CASE("(WL) opendir, readdir, rewinddir, seekdir work as expected", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_opendir_readdir_rewinddir("/spiflash/dir");
test_teardown();
}
TEST_CASE("(WL) multiple tasks can use same volume", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_concurrent("/spiflash/f");
test_teardown();
}
TEST_CASE("(WL) write/read speed test", "[fatfs][wear_levelling][timeout=60]")
{
/* Erase partition before running the test to get consistent results */
const esp_partition_t* part = get_test_data_partition();
esp_partition_erase_range(part, 0, part->size);
test_setup();
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
esp_fill_random(buf, buf_size);
const size_t file_size = 256 * 1024;
const char* file = "/spiflash/256k.bin";
test_fatfs_rw_speed(file, buf, 4 * 1024, file_size, true);
test_fatfs_rw_speed(file, buf, 8 * 1024, file_size, true);
test_fatfs_rw_speed(file, buf, 16 * 1024, file_size, true);
test_fatfs_rw_speed(file, buf, 4 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 8 * 1024, file_size, false);
test_fatfs_rw_speed(file, buf, 16 * 1024, file_size, false);
unlink(file);
free(buf);
test_teardown();
}
/*
* In FatFs menuconfig, set CONFIG_FATFS_API_ENCODING to UTF-8 and set the
* Codepage to CP936 (Simplified Chinese) in order to run the following tests.
* Ensure that the text editor is UTF-8 compatible when compiling these tests.
*/
#if defined(CONFIG_FATFS_API_ENCODING_UTF_8) && (CONFIG_FATFS_CODEPAGE == 936)
TEST_CASE("(WL) can read file with UTF-8 encoded strings", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_create_file_with_text("/spiflash/测试文件.txt", fatfs_test_hello_str_utf);
test_fatfs_read_file_utf_8("/spiflash/测试文件.txt");
test_teardown();
}
TEST_CASE("(WL) opendir, readdir, rewinddir, seekdir work as expected using UTF-8 encoded strings", "[fatfs][wear_levelling]")
{
test_setup();
test_fatfs_opendir_readdir_rewinddir_utf_8("/spiflash/目录");
test_teardown();
}
#endif

View File

@ -0,0 +1,106 @@
ifndef COMPONENT
COMPONENT := fatfs
endif
COMPONENT_LIB := lib$(COMPONENT).a
TEST_PROGRAM := test_$(COMPONENT)
STUBS_LIB_DIR := ../../../components/spi_flash/sim/stubs
STUBS_LIB_BUILD_DIR := $(STUBS_LIB_DIR)/build
STUBS_LIB := libstubs.a
SPI_FLASH_SIM_DIR := ../../../components/spi_flash/sim
SPI_FLASH_SIM_BUILD_DIR := $(SPI_FLASH_SIM_DIR)/build
SPI_FLASH_SIM_LIB := libspi_flash.a
WEAR_LEVELLING_DIR := ../../../components/wear_levelling/test_wl_host
WEAR_LEVELLING_BUILD_DIR := $(WEAR_LEVELLING_DIR)/build
WEAR_LEVELLING_LIB := libwl.a
include Makefile.files
all: test
ifndef SDKCONFIG
SDKCONFIG_DIR := $(dir $(realpath sdkconfig/sdkconfig.h))
SDKCONFIG := $(SDKCONFIG_DIR)sdkconfig.h
else
SDKCONFIG_DIR := $(dir $(realpath $(SDKCONFIG)))
endif
INCLUDE_FLAGS := $(addprefix -I, $(INCLUDE_DIRS) $(SDKCONFIG_DIR) ../../../tools/catch)
CPPFLAGS += $(INCLUDE_FLAGS) -g -m32
CXXFLAGS += $(INCLUDE_FLAGS) -std=c++11 -g -m32
# Build libraries that this component is dependent on
$(STUBS_LIB_BUILD_DIR)/$(STUBS_LIB): force
$(MAKE) -C $(STUBS_LIB_DIR) lib SDKCONFIG=$(SDKCONFIG)
$(SPI_FLASH_SIM_BUILD_DIR)/$(SPI_FLASH_SIM_LIB): force
$(MAKE) -C $(SPI_FLASH_SIM_DIR) lib SDKCONFIG=$(SDKCONFIG)
$(WEAR_LEVELLING_BUILD_DIR)/$(WEAR_LEVELLING_LIB): force
$(MAKE) -C $(WEAR_LEVELLING_DIR) lib SDKCONFIG=$(SDKCONFIG)
# Create target for building this component as a library
CFILES := $(filter %.c, $(SOURCE_FILES))
CPPFILES := $(filter %.cpp, $(SOURCE_FILES))
CTARGET = ${2}/$(patsubst %.c,%.o,$(notdir ${1}))
CPPTARGET = ${2}/$(patsubst %.cpp,%.o,$(notdir ${1}))
ifndef BUILD_DIR
BUILD_DIR := build
endif
OBJ_FILES := $(addprefix $(BUILD_DIR)/, $(filter %.o, $(notdir $(SOURCE_FILES:.cpp=.o) $(SOURCE_FILES:.c=.o))))
define COMPILE_C
$(call CTARGET, ${1}, $(BUILD_DIR)) : ${1} $(SDKCONFIG)
mkdir -p $(BUILD_DIR)
$(CC) $(CPPFLAGS) $(CFLAGS) -c -o $(call CTARGET, ${1}, $(BUILD_DIR)) ${1}
endef
define COMPILE_CPP
$(call CPPTARGET, ${1}, $(BUILD_DIR)) : ${1} $(SDKCONFIG)
mkdir -p $(BUILD_DIR)
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c -o $(call CPPTARGET, ${1}, $(BUILD_DIR)) ${1}
endef
$(BUILD_DIR)/$(COMPONENT_LIB): $(OBJ_FILES) $(SDKCONFIG)
mkdir -p $(BUILD_DIR)
$(AR) rcs $@ $^
lib: $(BUILD_DIR)/$(COMPONENT_LIB)
$(foreach cfile, $(CFILES), $(eval $(call COMPILE_C, $(cfile))))
$(foreach cxxfile, $(CPPFILES), $(eval $(call COMPILE_CPP, $(cxxfile))))
# Create target for building this component as a test
TEST_SOURCE_FILES = \
test_fatfs.cpp \
main.cpp \
TEST_OBJ_FILES = $(filter %.o, $(TEST_SOURCE_FILES:.cpp=.o) $(TEST_SOURCE_FILES:.c=.o))
$(TEST_PROGRAM): lib $(TEST_OBJ_FILES) $(WEAR_LEVELLING_BUILD_DIR)/$(WEAR_LEVELLING_LIB) $(SPI_FLASH_SIM_BUILD_DIR)/$(SPI_FLASH_SIM_LIB) $(STUBS_LIB_BUILD_DIR)/$(STUBS_LIB) partition_table.bin $(SDKCONFIG)
g++ $(LDFLAGS) $(CXXFLAGS) -o $@ $(TEST_OBJ_FILES) -L$(BUILD_DIR) -l:$(COMPONENT_LIB) -L$(WEAR_LEVELLING_BUILD_DIR) -l:$(WEAR_LEVELLING_LIB) -L$(SPI_FLASH_SIM_BUILD_DIR) -l:$(SPI_FLASH_SIM_LIB) -L$(STUBS_LIB_BUILD_DIR) -l:$(STUBS_LIB)
test: $(TEST_PROGRAM)
./$(TEST_PROGRAM)
# Create other necessary targets
partition_table.bin: partition_table.csv
python ../../../components/partition_table/gen_esp32part.py --verify $< $@
force:
# Create target to cleanup files
clean:
$(MAKE) -C $(STUBS_LIB_DIR) clean
$(MAKE) -C $(SPI_FLASH_SIM_DIR) clean
$(MAKE) -C $(WEAR_LEVELLING_DIR) clean
rm -f $(OBJ_FILES) $(TEST_OBJ_FILES) $(TEST_PROGRAM) $(COMPONENT_LIB) partition_table.bin
.PHONY: all lib test clean force

View File

@ -0,0 +1,38 @@
SOURCE_FILES := \
$(addprefix ../src/, \
ff.c \
ffunicode.c \
) \
$(addprefix ../diskio/,\
diskio.c \
diskio_wl.c \
) \
../port/linux/ffsystem.c
INCLUDE_DIRS := \
. \
../diskio \
../src \
$(addprefix ../../spi_flash/sim/stubs/, \
app_update/include \
driver/include \
esp32/include \
freertos/include \
log/include \
newlib/include \
sdmmc/include \
vfs/include \
) \
$(addprefix ../../../components/, \
esp_rom/include \
xtensa/include \
xtensa/esp32/include \
soc/esp32/include \
soc/include \
esp32/include \
esp_common/include \
bootloader_support/include \
app_update/include \
spi_flash/include \
wear_levelling/include \
)

View File

@ -0,0 +1,17 @@
include $(COMPONENT_PATH)/Makefile.files
COMPONENT_OWNBUILDTARGET := 1
COMPONENT_OWNCLEANTARGET := 1
COMPONENT_ADD_INCLUDEDIRS := $(INCLUDE_DIRS)
.PHONY: build
build: $(SDKCONFIG_HEADER)
$(MAKE) -C $(COMPONENT_PATH) lib SDKCONFIG=$(SDKCONFIG_HEADER) BUILD_DIR=$(COMPONENT_BUILD_DIR) COMPONENT=$(COMPONENT_NAME)
CLEAN_FILES := component_project_vars.mk
.PHONY: clean
clean:
$(summary) RM $(CLEAN_FILES)
rm -f $(CLEAN_FILES)
$(MAKE) -C $(COMPONENT_PATH) clean SDKCONFIG=$(SDKCONFIG_HEADER) BUILD_DIR=$(COMPONENT_BUILD_DIR) COMPONENT=$(COMPONENT_NAME)

View File

@ -0,0 +1,2 @@
#define CATCH_CONFIG_MAIN
#include "catch.hpp"

View File

@ -0,0 +1,6 @@
# Name, Type, SubType, Offset, Size, Flags
# Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1M,
storage, data, fat, , 1M,
1 # Name, Type, SubType, Offset, Size, Flags
2 # Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
3 nvs, data, nvs, 0x9000, 0x6000,
4 phy_init, data, phy, 0xf000, 0x1000,
5 factory, app, factory, 0x10000, 1M,
6 storage, data, fat, , 1M,

View File

@ -0,0 +1,8 @@
# pragma once
#define CONFIG_IDF_TARGET_ESP32 1
#define CONFIG_WL_SECTOR_SIZE 4096
#define CONFIG_LOG_DEFAULT_LEVEL 3
#define CONFIG_PARTITION_TABLE_OFFSET 0x8000
#define CONFIG_ESPTOOLPY_FLASHSIZE "8MB"
//currently use the legacy implementation, since the stubs for new HAL are not done yet
#define CONFIG_SPI_FLASH_USE_LEGACY_IMPL

View File

@ -0,0 +1,93 @@
#include <stdio.h>
#include <string.h>
#include "ff.h"
#include "esp_partition.h"
#include "wear_levelling.h"
#include "diskio_impl.h"
#include "diskio_wl.h"
#include "catch.hpp"
extern "C" void _spi_flash_init(const char* chip_size, size_t block_size, size_t sector_size, size_t page_size, const char* partition_bin);
TEST_CASE("create volume, open file, write and read back data", "[fatfs]")
{
_spi_flash_init(CONFIG_ESPTOOLPY_FLASHSIZE, CONFIG_WL_SECTOR_SIZE * 16, CONFIG_WL_SECTOR_SIZE, CONFIG_WL_SECTOR_SIZE, "partition_table.bin");
FRESULT fr_result;
BYTE pdrv;
FATFS fs;
FIL file;
UINT bw;
esp_err_t esp_result;
const esp_partition_t *partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_FAT, "storage");
// Mount wear-levelled partition
wl_handle_t wl_handle;
esp_result = wl_mount(partition, &wl_handle);
REQUIRE(esp_result == ESP_OK);
// Get a physical drive
esp_result = ff_diskio_get_drive(&pdrv);
REQUIRE(esp_result == ESP_OK);
// Register physical drive as wear-levelled partition
esp_result = ff_diskio_register_wl_partition(pdrv, wl_handle);
// Create FAT volume on the entire disk
DWORD part_list[] = {100, 0, 0, 0};
BYTE work_area[FF_MAX_SS];
fr_result = f_fdisk(pdrv, part_list, work_area);
REQUIRE(fr_result == FR_OK);
fr_result = f_mkfs("", FM_ANY, 0, work_area, sizeof(work_area)); // Use default volume
// Mount the volume
fr_result = f_mount(&fs, "", 0);
REQUIRE(fr_result == FR_OK);
// Open, write and read data
fr_result = f_open(&file, "test.txt", FA_OPEN_ALWAYS | FA_READ | FA_WRITE);
REQUIRE(fr_result == FR_OK);
// Generate data
uint32_t data_size = 100000;
char *data = (char*) malloc(data_size);
char *read = (char*) malloc(data_size);
for(uint32_t i = 0; i < data_size; i += sizeof(i))
{
*((uint32_t*)(data + i)) = i;
}
// Write generated data
fr_result = f_write(&file, data, data_size, &bw);
REQUIRE(fr_result == FR_OK);
REQUIRE(bw == data_size);
// Move to beginning of file
fr_result = f_lseek(&file, 0);
REQUIRE(fr_result == FR_OK);
// Read written data
fr_result = f_read(&file, read, data_size, &bw);
REQUIRE(fr_result == FR_OK);
REQUIRE(bw == data_size);
REQUIRE(memcmp(data, read, data_size) == 0);
// Close file
fr_result = f_close(&file);
REQUIRE(fr_result == FR_OK);
// Unmount default volume
fr_result = f_mount(0, "", 0);
REQUIRE(fr_result == FR_OK);
free(read);
free(data);
}

View File

@ -0,0 +1,236 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stddef.h>
#include "esp_err.h"
#include "driver/gpio.h"
#include "driver/sdmmc_types.h"
#include "driver/sdspi_host.h"
#include "ff.h"
#include "wear_levelling.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Register FATFS with VFS component
*
* This function registers given FAT drive in VFS, at the specified base path.
* If only one drive is used, fat_drive argument can be an empty string.
* Refer to FATFS library documentation on how to specify FAT drive.
* This function also allocates FATFS structure which should be used for f_mount
* call.
*
* @note This function doesn't mount the drive into FATFS, it just connects
* POSIX and C standard library IO function with FATFS. You need to mount
* desired drive into FATFS separately.
*
* @param base_path path prefix where FATFS should be registered
* @param fat_drive FATFS drive specification; if only one drive is used, can be an empty string
* @param max_files maximum number of files which can be open at the same time
* @param[out] out_fs pointer to FATFS structure which can be used for FATFS f_mount call is returned via this argument.
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_register was already called
* - ESP_ERR_NO_MEM if not enough memory or too many VFSes already registered
*/
esp_err_t esp_vfs_fat_register(const char* base_path, const char* fat_drive,
size_t max_files, FATFS** out_fs);
/**
* @brief Un-register FATFS from VFS
*
* @note FATFS structure returned by esp_vfs_fat_register is destroyed after
* this call. Make sure to call f_mount function to unmount it before
* calling esp_vfs_fat_unregister_ctx.
* Difference between this function and the one above is that this one
* will release the correct drive, while the one above will release
* the last registered one
*
* @param base_path path prefix where FATFS is registered. This is the same
* used when esp_vfs_fat_register was called
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if FATFS is not registered in VFS
*/
esp_err_t esp_vfs_fat_unregister_path(const char* base_path);
/**
* @brief Configuration arguments for esp_vfs_fat_sdmmc_mount and esp_vfs_fat_spiflash_mount functions
*/
typedef struct {
/**
* If FAT partition can not be mounted, and this parameter is true,
* create partition table and format the filesystem.
*/
bool format_if_mount_failed;
int max_files; ///< Max number of open files
/**
* If format_if_mount_failed is set, and mount fails, format the card
* with given allocation unit size. Must be a power of 2, between sector
* size and 128 * sector size.
* For SD cards, sector size is always 512 bytes. For wear_levelling,
* sector size is determined by CONFIG_WL_SECTOR_SIZE option.
*
* Using larger allocation unit size will result in higher read/write
* performance and higher overhead when storing small files.
*
* Setting this field to 0 will result in allocation unit set to the
* sector size.
*/
size_t allocation_unit_size;
} esp_vfs_fat_mount_config_t;
// Compatibility definition
typedef esp_vfs_fat_mount_config_t esp_vfs_fat_sdmmc_mount_config_t;
/**
* @brief Convenience function to get FAT filesystem on SD card registered in VFS
*
* This is an all-in-one function which does the following:
* - initializes SDMMC driver or SPI driver with configuration in host_config
* - initializes SD card with configuration in slot_config
* - mounts FAT partition on SD card using FATFS library, with configuration in mount_config
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* This function is intended to make example code more compact.
* For real world applications, developers should implement the logic of
* probing SD card, locating and mounting partition, and registering FATFS in VFS,
* with proper error checking and handling of exceptional conditions.
*
* @param base_path path where partition should be registered (e.g. "/sdcard")
* @param host_config Pointer to structure describing SDMMC host. When using
* SDMMC peripheral, this structure can be initialized using
* SDMMC_HOST_DEFAULT() macro. When using SPI peripheral,
* this structure can be initialized using SDSPI_HOST_DEFAULT()
* macro.
* @param slot_config Pointer to structure with slot configuration.
* For SDMMC peripheral, pass a pointer to sdmmc_slot_config_t
* structure initialized using SDMMC_SLOT_CONFIG_DEFAULT.
* For SPI peripheral, pass a pointer to sdspi_slot_config_t
* structure initialized using SDSPI_SLOT_CONFIG_DEFAULT.
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @param[out] out_card if not NULL, pointer to the card information structure will be returned via this argument
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers
*/
esp_err_t esp_vfs_fat_sdmmc_mount(const char* base_path,
const sdmmc_host_t* host_config,
const void* slot_config,
const esp_vfs_fat_mount_config_t* mount_config,
sdmmc_card_t** out_card);
/**
* @brief Unmount FAT filesystem and release resources acquired using esp_vfs_fat_sdmmc_mount
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called
*/
esp_err_t esp_vfs_fat_sdmmc_unmount(void);
/**
* @brief Convenience function to initialize FAT filesystem in SPI flash and register it in VFS
*
* This is an all-in-one function which does the following:
*
* - finds the partition with defined partition_label. Partition label should be
* configured in the partition table.
* - initializes flash wear levelling library on top of the given partition
* - mounts FAT partition using FATFS library on top of flash wear levelling
* library
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* This function is intended to make example code more compact.
*
* @param base_path path where FATFS partition should be mounted (e.g. "/spiflash")
* @param partition_label label of the partition which should be used
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @param[out] wl_handle wear levelling driver handle
* @return
* - ESP_OK on success
* - ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with given label
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount was already called
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from wear levelling library, SPI flash driver, or FATFS drivers
*/
esp_err_t esp_vfs_fat_spiflash_mount(const char* base_path,
const char* partition_label,
const esp_vfs_fat_mount_config_t* mount_config,
wl_handle_t* wl_handle);
/**
* @brief Unmount FAT filesystem and release resources acquired using esp_vfs_fat_spiflash_mount
*
* @param base_path path where partition should be registered (e.g. "/spiflash")
* @param wl_handle wear levelling driver handle returned by esp_vfs_fat_spiflash_mount
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount hasn't been called
*/
esp_err_t esp_vfs_fat_spiflash_unmount(const char* base_path, wl_handle_t wl_handle);
/**
* @brief Convenience function to initialize read-only FAT filesystem and register it in VFS
*
* This is an all-in-one function which does the following:
*
* - finds the partition with defined partition_label. Partition label should be
* configured in the partition table.
* - mounts FAT partition using FATFS library
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* @note Wear levelling is not used when FAT is mounted in read-only mode using this function.
*
* @param base_path path where FATFS partition should be mounted (e.g. "/spiflash")
* @param partition_label label of the partition which should be used
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @return
* - ESP_OK on success
* - ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with given label
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_rawflash_mount was already called for the same partition
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from SPI flash driver, or FATFS drivers
*/
esp_err_t esp_vfs_fat_rawflash_mount(const char* base_path,
const char* partition_label,
const esp_vfs_fat_mount_config_t* mount_config);
/**
* @brief Unmount FAT filesystem and release resources acquired using esp_vfs_fat_rawflash_mount
*
* @param base_path path where partition should be registered (e.g. "/spiflash")
* @param partition_label label of partition to be unmounted
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount hasn't been called
*/
esp_err_t esp_vfs_fat_rawflash_unmount(const char* base_path, const char* partition_label);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,956 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include "esp_vfs.h"
#include "esp_log.h"
#include "ff.h"
#include "diskio_impl.h"
typedef struct {
char fat_drive[8]; /* FAT drive name */
char base_path[ESP_VFS_PATH_MAX]; /* base path in VFS where partition is registered */
size_t max_files; /* max number of simultaneously open files; size of files[] array */
_lock_t lock; /* guard for access to this structure */
FATFS fs; /* fatfs library FS structure */
char tmp_path_buf[FILENAME_MAX+3]; /* temporary buffer used to prepend drive name to the path */
char tmp_path_buf2[FILENAME_MAX+3]; /* as above; used in functions which take two path arguments */
bool *o_append; /* O_APPEND is stored here for each max_files entries (because O_APPEND is not compatible with FA_OPEN_APPEND) */
FIL files[0]; /* array with max_files entries; must be the final member of the structure */
} vfs_fat_ctx_t;
typedef struct {
DIR dir;
long offset;
FF_DIR ffdir;
FILINFO filinfo;
struct dirent cur_dirent;
} vfs_fat_dir_t;
/* Date and time storage formats in FAT */
typedef union {
struct {
uint16_t mday : 5; /* Day of month, 1 - 31 */
uint16_t mon : 4; /* Month, 1 - 12 */
uint16_t year : 7; /* Year, counting from 1980. E.g. 37 for 2017 */
};
uint16_t as_int;
} fat_date_t;
typedef union {
struct {
uint16_t sec : 5; /* Seconds divided by 2. E.g. 21 for 42 seconds */
uint16_t min : 6; /* Minutes, 0 - 59 */
uint16_t hour : 5; /* Hour, 0 - 23 */
};
uint16_t as_int;
} fat_time_t;
static const char* TAG = "vfs_fat";
static ssize_t vfs_fat_write(void* p, int fd, const void * data, size_t size);
static off_t vfs_fat_lseek(void* p, int fd, off_t size, int mode);
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size);
static ssize_t vfs_fat_pread(void *ctx, int fd, void *dst, size_t size, off_t offset);
static ssize_t vfs_fat_pwrite(void *ctx, int fd, const void *src, size_t size, off_t offset);
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode);
static int vfs_fat_close(void* ctx, int fd);
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st);
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st);
static int vfs_fat_fsync(void* ctx, int fd);
static int vfs_fat_link(void* ctx, const char* n1, const char* n2);
static int vfs_fat_unlink(void* ctx, const char *path);
static int vfs_fat_rename(void* ctx, const char *src, const char *dst);
static DIR* vfs_fat_opendir(void* ctx, const char* name);
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir);
static int vfs_fat_readdir_r(void* ctx, DIR* pdir, struct dirent* entry, struct dirent** out_dirent);
static long vfs_fat_telldir(void* ctx, DIR* pdir);
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset);
static int vfs_fat_closedir(void* ctx, DIR* pdir);
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode);
static int vfs_fat_rmdir(void* ctx, const char* name);
static int vfs_fat_access(void* ctx, const char *path, int amode);
static int vfs_fat_truncate(void* ctx, const char *path, off_t length);
static int vfs_fat_utime(void* ctx, const char *path, const struct utimbuf *times);
static vfs_fat_ctx_t* s_fat_ctxs[FF_VOLUMES] = { NULL, NULL };
//backwards-compatibility with esp_vfs_fat_unregister()
static vfs_fat_ctx_t* s_fat_ctx = NULL;
static size_t find_context_index_by_path(const char* base_path)
{
for(size_t i=0; i<FF_VOLUMES; i++) {
if (s_fat_ctxs[i] && !strcmp(s_fat_ctxs[i]->base_path, base_path)) {
return i;
}
}
return FF_VOLUMES;
}
static size_t find_unused_context_index(void)
{
for(size_t i=0; i<FF_VOLUMES; i++) {
if (!s_fat_ctxs[i]) {
return i;
}
}
return FF_VOLUMES;
}
esp_err_t esp_vfs_fat_register(const char* base_path, const char* fat_drive, size_t max_files, FATFS** out_fs)
{
size_t ctx = find_context_index_by_path(base_path);
if (ctx < FF_VOLUMES) {
return ESP_ERR_INVALID_STATE;
}
ctx = find_unused_context_index();
if (ctx == FF_VOLUMES) {
return ESP_ERR_NO_MEM;
}
const esp_vfs_t vfs = {
.flags = ESP_VFS_FLAG_CONTEXT_PTR,
.write_p = &vfs_fat_write,
.lseek_p = &vfs_fat_lseek,
.read_p = &vfs_fat_read,
.pread_p = &vfs_fat_pread,
.pwrite_p = &vfs_fat_pwrite,
.open_p = &vfs_fat_open,
.close_p = &vfs_fat_close,
.fstat_p = &vfs_fat_fstat,
.stat_p = &vfs_fat_stat,
.fsync_p = &vfs_fat_fsync,
.link_p = &vfs_fat_link,
.unlink_p = &vfs_fat_unlink,
.rename_p = &vfs_fat_rename,
.opendir_p = &vfs_fat_opendir,
.closedir_p = &vfs_fat_closedir,
.readdir_p = &vfs_fat_readdir,
.readdir_r_p = &vfs_fat_readdir_r,
.seekdir_p = &vfs_fat_seekdir,
.telldir_p = &vfs_fat_telldir,
.mkdir_p = &vfs_fat_mkdir,
.rmdir_p = &vfs_fat_rmdir,
.access_p = &vfs_fat_access,
.truncate_p = &vfs_fat_truncate,
.utime_p = &vfs_fat_utime,
};
size_t ctx_size = sizeof(vfs_fat_ctx_t) + max_files * sizeof(FIL);
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ff_memalloc(ctx_size);
if (fat_ctx == NULL) {
return ESP_ERR_NO_MEM;
}
memset(fat_ctx, 0, ctx_size);
fat_ctx->o_append = ff_memalloc(max_files * sizeof(bool));
if (fat_ctx->o_append == NULL) {
free(fat_ctx);
return ESP_ERR_NO_MEM;
}
memset(fat_ctx->o_append, 0, max_files * sizeof(bool));
fat_ctx->max_files = max_files;
strlcpy(fat_ctx->fat_drive, fat_drive, sizeof(fat_ctx->fat_drive) - 1);
strlcpy(fat_ctx->base_path, base_path, sizeof(fat_ctx->base_path) - 1);
esp_err_t err = esp_vfs_register(base_path, &vfs, fat_ctx);
if (err != ESP_OK) {
free(fat_ctx->o_append);
free(fat_ctx);
return err;
}
_lock_init(&fat_ctx->lock);
s_fat_ctxs[ctx] = fat_ctx;
//compatibility
s_fat_ctx = fat_ctx;
*out_fs = &fat_ctx->fs;
return ESP_OK;
}
esp_err_t esp_vfs_fat_unregister_path(const char* base_path)
{
size_t ctx = find_context_index_by_path(base_path);
if (ctx == FF_VOLUMES) {
return ESP_ERR_INVALID_STATE;
}
vfs_fat_ctx_t* fat_ctx = s_fat_ctxs[ctx];
esp_err_t err = esp_vfs_unregister(fat_ctx->base_path);
if (err != ESP_OK) {
return err;
}
_lock_close(&fat_ctx->lock);
free(fat_ctx->o_append);
free(fat_ctx);
s_fat_ctxs[ctx] = NULL;
return ESP_OK;
}
static int get_next_fd(vfs_fat_ctx_t* fat_ctx)
{
for (size_t i = 0; i < fat_ctx->max_files; ++i) {
if (fat_ctx->files[i].obj.fs == NULL) {
return (int) i;
}
}
return -1;
}
static int fat_mode_conv(int m)
{
int res = 0;
int acc_mode = m & O_ACCMODE;
if (acc_mode == O_RDONLY) {
res |= FA_READ;
} else if (acc_mode == O_WRONLY) {
res |= FA_WRITE;
} else if (acc_mode == O_RDWR) {
res |= FA_READ | FA_WRITE;
}
if ((m & O_CREAT) && (m & O_EXCL)) {
res |= FA_CREATE_NEW;
} else if ((m & O_CREAT) && (m & O_TRUNC)) {
res |= FA_CREATE_ALWAYS;
} else if (m & O_APPEND) {
res |= FA_OPEN_ALWAYS;
} else {
res |= FA_OPEN_EXISTING;
}
return res;
}
static int fresult_to_errno(FRESULT fr)
{
switch(fr) {
case FR_DISK_ERR: return EIO;
case FR_INT_ERR: return EIO;
case FR_NOT_READY: return ENODEV;
case FR_NO_FILE: return ENOENT;
case FR_NO_PATH: return ENOENT;
case FR_INVALID_NAME: return EINVAL;
case FR_DENIED: return EACCES;
case FR_EXIST: return EEXIST;
case FR_INVALID_OBJECT: return EBADF;
case FR_WRITE_PROTECTED: return EACCES;
case FR_INVALID_DRIVE: return ENXIO;
case FR_NOT_ENABLED: return ENODEV;
case FR_NO_FILESYSTEM: return ENODEV;
case FR_MKFS_ABORTED: return EINTR;
case FR_TIMEOUT: return ETIMEDOUT;
case FR_LOCKED: return EACCES;
case FR_NOT_ENOUGH_CORE: return ENOMEM;
case FR_TOO_MANY_OPEN_FILES: return ENFILE;
case FR_INVALID_PARAMETER: return EINVAL;
case FR_OK: return 0;
}
assert(0 && "unhandled FRESULT");
return ENOTSUP;
}
static void file_cleanup(vfs_fat_ctx_t* ctx, int fd)
{
memset(&ctx->files[fd], 0, sizeof(FIL));
}
/**
* @brief Prepend drive letters to path names
* This function returns new path path pointers, pointing to a temporary buffer
* inside ctx.
* @note Call this function with ctx->lock acquired. Paths are valid while the
* lock is held.
* @param ctx vfs_fat_ctx_t context
* @param[inout] path as input, pointer to the path; as output, pointer to the new path
* @param[inout] path2 as input, pointer to the path; as output, pointer to the new path
*/
static void prepend_drive_to_path(vfs_fat_ctx_t * ctx, const char ** path, const char ** path2){
snprintf(ctx->tmp_path_buf, sizeof(ctx->tmp_path_buf), "%s%s", ctx->fat_drive, *path);
*path = ctx->tmp_path_buf;
if(path2){
snprintf(ctx->tmp_path_buf2, sizeof(ctx->tmp_path_buf2), "%s%s", ((vfs_fat_ctx_t*)ctx)->fat_drive, *path2);
*path2 = ctx->tmp_path_buf2;
}
}
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode)
{
ESP_LOGV(TAG, "%s: path=\"%s\", flags=%x, mode=%x", __func__, path, flags, mode);
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
int fd = get_next_fd(fat_ctx);
if (fd < 0) {
_lock_release(&fat_ctx->lock);
ESP_LOGE(TAG, "open: no free file descriptors");
errno = ENFILE;
return -1;
}
FRESULT res = f_open(&fat_ctx->files[fd], path, fat_mode_conv(flags));
if (res != FR_OK) {
file_cleanup(fat_ctx, fd);
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
// O_APPEND need to be stored because it is not compatible with FA_OPEN_APPEND:
// - FA_OPEN_APPEND means to jump to the end of file only after open()
// - O_APPEND means to jump to the end only before each write()
// Other VFS drivers handles O_APPEND well (to the best of my knowledge),
// therefore this flag is stored here (at this VFS level) in order to save
// memory.
fat_ctx->o_append[fd] = (flags & O_APPEND) == O_APPEND;
_lock_release(&fat_ctx->lock);
return fd;
}
static ssize_t vfs_fat_write(void* ctx, int fd, const void * data, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
FRESULT res;
if (fat_ctx->o_append[fd]) {
if ((res = f_lseek(file, f_size(file))) != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
}
unsigned written = 0;
res = f_write(file, data, size, &written);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (written == 0) {
return -1;
}
}
return written;
}
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
unsigned read = 0;
FRESULT res = f_read(file, dst, size, &read);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (read == 0) {
return -1;
}
}
return read;
}
static ssize_t vfs_fat_pread(void *ctx, int fd, void *dst, size_t size, off_t offset)
{
ssize_t ret = -1;
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
FIL *file = &fat_ctx->files[fd];
const off_t prev_pos = f_tell(file);
FRESULT f_res = f_lseek(file, offset);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
goto pread_release;
}
unsigned read = 0;
f_res = f_read(file, dst, size, &read);
if (f_res == FR_OK) {
ret = read;
} else {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
// No return yet - need to restore previous position
}
f_res = f_lseek(file, prev_pos);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
if (ret >= 0) {
errno = fresult_to_errno(f_res);
} // else f_read failed so errno shouldn't be overwritten
ret = -1; // in case the read was successful but the seek wasn't
}
pread_release:
_lock_release(&fat_ctx->lock);
return ret;
}
static ssize_t vfs_fat_pwrite(void *ctx, int fd, const void *src, size_t size, off_t offset)
{
ssize_t ret = -1;
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
FIL *file = &fat_ctx->files[fd];
const off_t prev_pos = f_tell(file);
FRESULT f_res = f_lseek(file, offset);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
goto pwrite_release;
}
unsigned wr = 0;
f_res = f_write(file, src, size, &wr);
if (f_res == FR_OK) {
ret = wr;
} else {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
errno = fresult_to_errno(f_res);
// No return yet - need to restore previous position
}
f_res = f_lseek(file, prev_pos);
if (f_res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, f_res);
if (ret >= 0) {
errno = fresult_to_errno(f_res);
} // else f_write failed so errno shouldn't be overwritten
ret = -1; // in case the write was successful but the seek wasn't
}
pwrite_release:
_lock_release(&fat_ctx->lock);
return ret;
}
static int vfs_fat_fsync(void* ctx, int fd)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
FIL* file = &fat_ctx->files[fd];
FRESULT res = f_sync(file);
_lock_release(&fat_ctx->lock);
int rc = 0;
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
rc = -1;
}
return rc;
}
static int vfs_fat_close(void* ctx, int fd)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
FIL* file = &fat_ctx->files[fd];
FRESULT res = f_close(file);
file_cleanup(fat_ctx, fd);
_lock_release(&fat_ctx->lock);
int rc = 0;
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
rc = -1;
}
return rc;
}
static off_t vfs_fat_lseek(void* ctx, int fd, off_t offset, int mode)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
off_t new_pos;
if (mode == SEEK_SET) {
new_pos = offset;
} else if (mode == SEEK_CUR) {
off_t cur_pos = f_tell(file);
new_pos = cur_pos + offset;
} else if (mode == SEEK_END) {
off_t size = f_size(file);
new_pos = size + offset;
} else {
errno = EINVAL;
return -1;
}
FRESULT res = f_lseek(file, new_pos);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return new_pos;
}
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
st->st_size = f_size(file);
st->st_mode = S_IRWXU | S_IRWXG | S_IRWXO | S_IFREG;
st->st_mtime = 0;
st->st_atime = 0;
st->st_ctime = 0;
return 0;
}
static inline mode_t get_stat_mode(bool is_dir)
{
return S_IRWXU | S_IRWXG | S_IRWXO |
((is_dir) ? S_IFDIR : S_IFREG);
}
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st)
{
if (strcmp(path, "/") == 0) {
/* FatFS f_stat function does not work for the drive root.
* Just pretend that this is a directory.
*/
memset(st, 0, sizeof(*st));
st->st_mode = get_stat_mode(true);
return 0;
}
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FILINFO info;
FRESULT res = f_stat(path, &info);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
memset(st, 0, sizeof(*st));
st->st_size = info.fsize;
st->st_mode = get_stat_mode((info.fattrib & AM_DIR) != 0);
fat_date_t fdate = { .as_int = info.fdate };
fat_time_t ftime = { .as_int = info.ftime };
struct tm tm = {
.tm_mday = fdate.mday,
.tm_mon = fdate.mon - 1, /* unlike tm_mday, tm_mon is zero-based */
.tm_year = fdate.year + 80,
.tm_sec = ftime.sec * 2,
.tm_min = ftime.min,
.tm_hour = ftime.hour
};
st->st_mtime = mktime(&tm);
st->st_atime = 0;
st->st_ctime = 0;
return 0;
}
static int vfs_fat_unlink(void* ctx, const char *path)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FRESULT res = f_unlink(path);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_link(void* ctx, const char* n1, const char* n2)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &n1, &n2);
const size_t copy_buf_size = fat_ctx->fs.csize;
FRESULT res;
FIL* pf1 = (FIL*) ff_memalloc(sizeof(FIL));
FIL* pf2 = (FIL*) ff_memalloc(sizeof(FIL));
void* buf = ff_memalloc(copy_buf_size);
if (buf == NULL || pf1 == NULL || pf2 == NULL) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "alloc failed, pf1=%p, pf2=%p, buf=%p", pf1, pf2, buf);
free(pf1);
free(pf2);
free(buf);
errno = ENOMEM;
return -1;
}
memset(pf1, 0, sizeof(*pf1));
memset(pf2, 0, sizeof(*pf2));
res = f_open(pf1, n1, FA_READ | FA_OPEN_EXISTING);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
goto fail1;
}
res = f_open(pf2, n2, FA_WRITE | FA_CREATE_NEW);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
goto fail2;
}
size_t size_left = f_size(pf1);
while (size_left > 0) {
size_t will_copy = (size_left < copy_buf_size) ? size_left : copy_buf_size;
size_t read;
res = f_read(pf1, buf, will_copy, &read);
if (res != FR_OK) {
goto fail3;
} else if (read != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_t written;
res = f_write(pf2, buf, will_copy, &written);
if (res != FR_OK) {
goto fail3;
} else if (written != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_left -= will_copy;
}
fail3:
f_close(pf2);
free(pf2);
fail2:
f_close(pf1);
free(pf1);
fail1:
free(buf);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rename(void* ctx, const char *src, const char *dst)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &src, &dst);
FRESULT res = f_rename(src, dst);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static DIR* vfs_fat_opendir(void* ctx, const char* name)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
vfs_fat_dir_t* fat_dir = ff_memalloc(sizeof(vfs_fat_dir_t));
if (!fat_dir) {
_lock_release(&fat_ctx->lock);
errno = ENOMEM;
return NULL;
}
memset(fat_dir, 0, sizeof(*fat_dir));
FRESULT res = f_opendir(&fat_dir->ffdir, name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
free(fat_dir);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return NULL;
}
return (DIR*) fat_dir;
}
static int vfs_fat_closedir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_closedir(&fat_dir->ffdir);
free(pdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir)
{
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
struct dirent* out_dirent;
int err = vfs_fat_readdir_r(ctx, pdir, &fat_dir->cur_dirent, &out_dirent);
if (err != 0) {
errno = err;
return NULL;
}
return out_dirent;
}
static int vfs_fat_readdir_r(void* ctx, DIR* pdir,
struct dirent* entry, struct dirent** out_dirent)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
*out_dirent = NULL;
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
return fresult_to_errno(res);
}
if (fat_dir->filinfo.fname[0] == 0) {
// end of directory
*out_dirent = NULL;
return 0;
}
entry->d_ino = 0;
if (fat_dir->filinfo.fattrib & AM_DIR) {
entry->d_type = DT_DIR;
} else {
entry->d_type = DT_REG;
}
strlcpy(entry->d_name, fat_dir->filinfo.fname,
sizeof(entry->d_name));
fat_dir->offset++;
*out_dirent = entry;
return 0;
}
static long vfs_fat_telldir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
return fat_dir->offset;
}
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res;
if (offset < fat_dir->offset) {
res = f_rewinddir(&fat_dir->ffdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: rewinddir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset = 0;
}
while (fat_dir->offset < offset) {
res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: f_readdir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset++;
}
}
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode)
{
(void) mode;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
FRESULT res = f_mkdir(name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rmdir(void* ctx, const char* name)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &name, NULL);
FRESULT res = f_unlink(name);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_access(void* ctx, const char *path, int amode)
{
FILINFO info;
int ret = 0;
FRESULT res;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
res = f_stat(path, &info);
_lock_release(&fat_ctx->lock);
if (res == FR_OK) {
if (((amode & W_OK) == W_OK) && ((info.fattrib & AM_RDO) == AM_RDO)) {
ret = -1;
errno = EACCES;
}
// There is no flag to test readable or executable: we assume that if
// it exists then it is readable and executable
} else {
ret = -1;
errno = ENOENT;
}
return ret;
}
static int vfs_fat_truncate(void* ctx, const char *path, off_t length)
{
FRESULT res;
FIL* file;
int ret = 0;
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
file = (FIL*) ff_memalloc(sizeof(FIL));
if (file == NULL) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "truncate alloc failed");
errno = ENOMEM;
ret = -1;
goto out;
}
memset(file, 0, sizeof(*file));
res = f_open(file, path, FA_WRITE);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
goto out;
}
res = f_size(file);
if (res < length) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "truncate does not support extending size");
errno = EPERM;
ret = -1;
goto close;
}
res = f_lseek(file, length);
if (res != FR_OK) {
_lock_release(&fat_ctx->lock);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
goto close;
}
res = f_truncate(file);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
ret = -1;
}
close:
res = f_close(file);
if (res != FR_OK) {
ESP_LOGE(TAG, "closing file opened for truncate failed");
// Overwrite previous errors, since not being able to close
// an opened file is a more critical issue.
errno = fresult_to_errno(res);
ret = -1;
}
out:
free(file);
return ret;
}
static int vfs_fat_utime(void *ctx, const char *path, const struct utimbuf *times)
{
FILINFO filinfo_time;
{
struct tm tm_time;
if (times) {
localtime_r(&times->modtime, &tm_time);
} else {
// use current time
struct timeval tv;
gettimeofday(&tv, NULL);
localtime_r(&tv.tv_sec, &tm_time);
}
if (tm_time.tm_year < 80) {
// FATFS cannot handle years before 1980
errno = EINVAL;
return -1;
}
fat_date_t fdate;
fat_time_t ftime;
// this time transformation is esentially the reverse of the one in vfs_fat_stat()
fdate.mday = tm_time.tm_mday;
fdate.mon = tm_time.tm_mon + 1; // January in fdate.mon is 1, and 0 in tm_time.tm_mon
fdate.year = tm_time.tm_year - 80; // tm_time.tm_year=0 is 1900, tm_time.tm_year=0 is 1980
ftime.sec = tm_time.tm_sec / 2, // ftime.sec counts seconds by 2
ftime.min = tm_time.tm_min;
ftime.hour = tm_time.tm_hour;
filinfo_time.fdate = fdate.as_int;
filinfo_time.ftime = ftime.as_int;
}
vfs_fat_ctx_t *fat_ctx = (vfs_fat_ctx_t *) ctx;
_lock_acquire(&fat_ctx->lock);
prepend_drive_to_path(fat_ctx, &path, NULL);
FRESULT res = f_utime(path, &filinfo_time);
_lock_release(&fat_ctx->lock);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}

View File

@ -0,0 +1,30 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "esp_vfs_fat.h"
#include <sys/param.h>
#include <stddef.h>
static inline size_t esp_vfs_fat_get_allocation_unit_size(
size_t sector_size, size_t requested_size)
{
size_t alloc_unit_size = requested_size;
const size_t max_sectors_per_cylinder = 128;
const size_t max_size = sector_size * max_sectors_per_cylinder;
alloc_unit_size = MAX(alloc_unit_size, sector_size);
alloc_unit_size = MIN(alloc_unit_size, max_size);
return alloc_unit_size;
}

View File

@ -0,0 +1,186 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include "esp_log.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "vfs_fat_internal.h"
#include "driver/sdmmc_host.h"
#include "driver/sdspi_host.h"
#include "sdmmc_cmd.h"
#include "diskio_impl.h"
#include "diskio_sdmmc.h"
static const char* TAG = "vfs_fat_sdmmc";
static sdmmc_card_t* s_card = NULL;
static uint8_t s_pdrv = 0;
static char * s_base_path = NULL;
esp_err_t esp_vfs_fat_sdmmc_mount(const char* base_path,
const sdmmc_host_t* host_config,
const void* slot_config,
const esp_vfs_fat_mount_config_t* mount_config,
sdmmc_card_t** out_card)
{
const size_t workbuf_size = 4096;
void* workbuf = NULL;
FATFS* fs = NULL;
if (s_card != NULL) {
return ESP_ERR_INVALID_STATE;
}
// connect SDMMC driver to FATFS
BYTE pdrv = 0xFF;
if (ff_diskio_get_drive(&pdrv) != ESP_OK || pdrv == 0xFF) {
ESP_LOGD(TAG, "the maximum count of volumes is already mounted");
return ESP_ERR_NO_MEM;
}
s_base_path = strdup(base_path);
if(!s_base_path){
ESP_LOGD(TAG, "could not copy base_path");
return ESP_ERR_NO_MEM;
}
esp_err_t err = ESP_OK;
// not using ff_memalloc here, as allocation in internal RAM is preferred
s_card = malloc(sizeof(sdmmc_card_t));
if (s_card == NULL) {
err = ESP_ERR_NO_MEM;
goto fail;
}
err = (*host_config->init)();
if (err != ESP_OK) {
ESP_LOGD(TAG, "host init returned rc=0x%x", err);
goto fail;
}
// configure SD slot
if (host_config->flags == SDMMC_HOST_FLAG_SPI) {
err = sdspi_host_init_slot(host_config->slot,
(const sdspi_slot_config_t*) slot_config);
} else {
err = sdmmc_host_init_slot(host_config->slot,
(const sdmmc_slot_config_t*) slot_config);
}
if (err != ESP_OK) {
ESP_LOGD(TAG, "slot_config returned rc=0x%x", err);
goto fail;
}
// probe and initialize card
err = sdmmc_card_init(host_config, s_card);
if (err != ESP_OK) {
ESP_LOGD(TAG, "sdmmc_card_init failed 0x(%x)", err);
goto fail;
}
if (out_card != NULL) {
*out_card = s_card;
}
ff_diskio_register_sdmmc(pdrv, s_card);
s_pdrv = pdrv;
ESP_LOGD(TAG, "using pdrv=%i", pdrv);
char drv[3] = {(char)('0' + pdrv), ':', 0};
// connect FATFS to VFS
err = esp_vfs_fat_register(base_path, drv, mount_config->max_files, &fs);
if (err == ESP_ERR_INVALID_STATE) {
// it's okay, already registered with VFS
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "esp_vfs_fat_register failed 0x(%x)", err);
goto fail;
}
// Try to mount partition
FRESULT res = f_mount(fs, drv, 1);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGW(TAG, "failed to mount card (%d)", res);
if (!((res == FR_NO_FILESYSTEM || res == FR_INT_ERR)
&& mount_config->format_if_mount_failed)) {
goto fail;
}
ESP_LOGW(TAG, "partitioning card");
workbuf = ff_memalloc(workbuf_size);
if (workbuf == NULL) {
err = ESP_ERR_NO_MEM;
goto fail;
}
DWORD plist[] = {100, 0, 0, 0};
res = f_fdisk(s_pdrv, plist, workbuf);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_fdisk failed (%d)", res);
goto fail;
}
size_t alloc_unit_size = esp_vfs_fat_get_allocation_unit_size(
s_card->csd.sector_size,
mount_config->allocation_unit_size);
ESP_LOGW(TAG, "formatting card, allocation unit size=%d", alloc_unit_size);
res = f_mkfs(drv, FM_ANY, alloc_unit_size, workbuf, workbuf_size);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mkfs failed (%d)", res);
goto fail;
}
free(workbuf);
workbuf = NULL;
ESP_LOGW(TAG, "mounting again");
res = f_mount(fs, drv, 0);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mount failed after formatting (%d)", res);
goto fail;
}
}
return ESP_OK;
fail:
host_config->deinit();
free(workbuf);
if (fs) {
f_mount(NULL, drv, 0);
}
esp_vfs_fat_unregister_path(base_path);
ff_diskio_unregister(pdrv);
free(s_card);
s_card = NULL;
free(s_base_path);
s_base_path = NULL;
return err;
}
esp_err_t esp_vfs_fat_sdmmc_unmount(void)
{
if (s_card == NULL) {
return ESP_ERR_INVALID_STATE;
}
// unmount
char drv[3] = {(char)('0' + s_pdrv), ':', 0};
f_mount(0, drv, 0);
// release SD driver
esp_err_t (*host_deinit)(void) = s_card->host.deinit;
ff_diskio_unregister(s_pdrv);
free(s_card);
s_card = NULL;
(*host_deinit)();
esp_err_t err = esp_vfs_fat_unregister_path(s_base_path);
free(s_base_path);
s_base_path = NULL;
return err;
}

View File

@ -0,0 +1,209 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include "esp_log.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "vfs_fat_internal.h"
#include "diskio_impl.h"
#include "diskio_rawflash.h"
#include "wear_levelling.h"
#include "diskio_wl.h"
static const char *TAG = "vfs_fat_spiflash";
esp_err_t esp_vfs_fat_spiflash_mount(const char* base_path,
const char* partition_label,
const esp_vfs_fat_mount_config_t* mount_config,
wl_handle_t* wl_handle)
{
esp_err_t result = ESP_OK;
const size_t workbuf_size = 4096;
void *workbuf = NULL;
esp_partition_subtype_t subtype = partition_label ?
ESP_PARTITION_SUBTYPE_ANY : ESP_PARTITION_SUBTYPE_DATA_FAT;
const esp_partition_t *data_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA,
subtype, partition_label);
if (data_partition == NULL) {
ESP_LOGE(TAG, "Failed to find FATFS partition (type='data', subtype='fat', partition_label='%s'). Check the partition table.", partition_label);
return ESP_ERR_NOT_FOUND;
}
result = wl_mount(data_partition, wl_handle);
if (result != ESP_OK) {
ESP_LOGE(TAG, "failed to mount wear levelling layer. result = %i", result);
return result;
}
// connect driver to FATFS
BYTE pdrv = 0xFF;
if (ff_diskio_get_drive(&pdrv) != ESP_OK) {
ESP_LOGD(TAG, "the maximum count of volumes is already mounted");
return ESP_ERR_NO_MEM;
}
ESP_LOGD(TAG, "using pdrv=%i", pdrv);
char drv[3] = {(char)('0' + pdrv), ':', 0};
result = ff_diskio_register_wl_partition(pdrv, *wl_handle);
if (result != ESP_OK) {
ESP_LOGE(TAG, "ff_diskio_register_wl_partition failed pdrv=%i, error - 0x(%x)", pdrv, result);
goto fail;
}
FATFS *fs;
result = esp_vfs_fat_register(base_path, drv, mount_config->max_files, &fs);
if (result == ESP_ERR_INVALID_STATE) {
// it's okay, already registered with VFS
} else if (result != ESP_OK) {
ESP_LOGD(TAG, "esp_vfs_fat_register failed 0x(%x)", result);
goto fail;
}
// Try to mount partition
FRESULT fresult = f_mount(fs, drv, 1);
if (fresult != FR_OK) {
ESP_LOGW(TAG, "f_mount failed (%d)", fresult);
if (!((fresult == FR_NO_FILESYSTEM || fresult == FR_INT_ERR)
&& mount_config->format_if_mount_failed)) {
result = ESP_FAIL;
goto fail;
}
workbuf = ff_memalloc(workbuf_size);
if (workbuf == NULL) {
result = ESP_ERR_NO_MEM;
goto fail;
}
size_t alloc_unit_size = esp_vfs_fat_get_allocation_unit_size(
CONFIG_WL_SECTOR_SIZE,
mount_config->allocation_unit_size);
ESP_LOGI(TAG, "Formatting FATFS partition, allocation unit size=%d", alloc_unit_size);
fresult = f_mkfs(drv, FM_ANY | FM_SFD, alloc_unit_size, workbuf, workbuf_size);
if (fresult != FR_OK) {
result = ESP_FAIL;
ESP_LOGE(TAG, "f_mkfs failed (%d)", fresult);
goto fail;
}
free(workbuf);
workbuf = NULL;
ESP_LOGI(TAG, "Mounting again");
fresult = f_mount(fs, drv, 0);
if (fresult != FR_OK) {
result = ESP_FAIL;
ESP_LOGE(TAG, "f_mount failed after formatting (%d)", fresult);
goto fail;
}
}
return ESP_OK;
fail:
free(workbuf);
esp_vfs_fat_unregister_path(base_path);
ff_diskio_unregister(pdrv);
return result;
}
esp_err_t esp_vfs_fat_spiflash_unmount(const char *base_path, wl_handle_t wl_handle)
{
BYTE pdrv = ff_diskio_get_pdrv_wl(wl_handle);
if (pdrv == 0xff) {
return ESP_ERR_INVALID_STATE;
}
char drv[3] = {(char)('0' + pdrv), ':', 0};
f_mount(0, drv, 0);
ff_diskio_unregister(pdrv);
ff_diskio_clear_pdrv_wl(wl_handle);
// release partition driver
esp_err_t err_drv = wl_unmount(wl_handle);
esp_err_t err = esp_vfs_fat_unregister_path(base_path);
if (err == ESP_OK) err = err_drv;
return err;
}
esp_err_t esp_vfs_fat_rawflash_mount(const char* base_path,
const char* partition_label,
const esp_vfs_fat_mount_config_t* mount_config)
{
esp_err_t result = ESP_OK;
const esp_partition_t *data_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA,
ESP_PARTITION_SUBTYPE_DATA_FAT, partition_label);
if (data_partition == NULL) {
ESP_LOGE(TAG, "Failed to find FATFS partition (type='data', subtype='fat', partition_label='%s'). Check the partition table.", partition_label);
return ESP_ERR_NOT_FOUND;
}
// connect driver to FATFS
BYTE pdrv = 0xFF;
if (ff_diskio_get_drive(&pdrv) != ESP_OK) {
ESP_LOGD(TAG, "the maximum count of volumes is already mounted");
return ESP_ERR_NO_MEM;
}
ESP_LOGD(TAG, "using pdrv=%i", pdrv);
char drv[3] = {(char)('0' + pdrv), ':', 0};
result = ff_diskio_register_raw_partition(pdrv, data_partition);
if (result != ESP_OK) {
ESP_LOGE(TAG, "ff_diskio_register_raw_partition failed pdrv=%i, error - 0x(%x)", pdrv, result);
goto fail;
}
FATFS *fs;
result = esp_vfs_fat_register(base_path, drv, mount_config->max_files, &fs);
if (result == ESP_ERR_INVALID_STATE) {
// it's okay, already registered with VFS
} else if (result != ESP_OK) {
ESP_LOGD(TAG, "esp_vfs_fat_register failed 0x(%x)", result);
goto fail;
}
// Try to mount partition
FRESULT fresult = f_mount(fs, drv, 1);
if (fresult != FR_OK) {
ESP_LOGW(TAG, "f_mount failed (%d)", fresult);
result = ESP_FAIL;
goto fail;
}
return ESP_OK;
fail:
esp_vfs_fat_unregister_path(base_path);
ff_diskio_unregister(pdrv);
return result;
}
esp_err_t esp_vfs_fat_rawflash_unmount(const char *base_path, const char* partition_label)
{
const esp_partition_t *data_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA,
ESP_PARTITION_SUBTYPE_DATA_FAT, partition_label);
if (data_partition == NULL) {
ESP_LOGE(TAG, "Failed to find FATFS partition (type='data', subtype='fat', partition_label='%s'). Check the partition table.", partition_label);
return ESP_ERR_NOT_FOUND;
}
BYTE pdrv = ff_diskio_get_pdrv_raw(data_partition);
if (pdrv == 0xff) {
return ESP_ERR_INVALID_STATE;
}
char drv[3] = {(char)('0' + pdrv), ':', 0};
f_mount(0, drv, 0);
ff_diskio_unregister(pdrv);
esp_err_t err = esp_vfs_fat_unregister_path(base_path);
return err;
}

View File

@ -11,7 +11,7 @@ else ifdef CONFIG_NEWLIB_LIBRARY_LEVEL_FLOAT_NANO
LIB_PATH := $(COMPONENT_PATH)/newlib/lib/libc_fnano.a $(COMPONENT_PATH)/newlib/lib/libm.a
endif
COMPONENT_ADD_INCLUDEDIRS += newlib/port/include newlib/include
COMPONENT_ADD_INCLUDEDIRS := newlib/port/include newlib/include
COMPONENT_SRCDIRS += newlib/port
COMPONENT_ADD_LDFLAGS := $(LIB_PATH) -lnewlib
COMPONENT_ADD_LINKER_DEPS := $(LIB_PATH)

View File

@ -110,7 +110,7 @@ typedef _fpos64_t fpos64_t;
#ifdef __FOPEN_MAX__
#define FOPEN_MAX __FOPEN_MAX__
#else
#define FOPEN_MAX 20
#define FOPEN_MAX 10
#endif
#ifdef __FILENAME_MAX__

View File

@ -0,0 +1,31 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP_SYS_UNISTD_H
#define _ESP_SYS_UNISTD_H
#ifdef __cplusplus
extern "C" {
#endif
#include_next <sys/unistd.h>
int truncate(const char *, off_t __length);
int gethostname(char *__name, size_t __len);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_UNISTD_H */

View File

@ -0,0 +1,35 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _UTIME_H_
#define _UTIME_H_
#include <sys/time.h>
#ifdef __cplusplus
extern "C" {
#endif
struct utimbuf {
time_t actime; // access time
time_t modtime; // modification time
};
int utime(const char *path, const struct utimbuf *times);
#ifdef __cplusplus
};
#endif
#endif /* _UTIME_H_ */

View File

@ -0,0 +1,21 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
#include "esp_vfs.h"
ssize_t pread(int fd, void *dst, size_t size, off_t offset)
{
return esp_vfs_pread(fd, dst, size, offset);
}

View File

@ -0,0 +1,21 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
#include "esp_vfs.h"
ssize_t pwrite(int fd, const void *src, size_t size, off_t offset)
{
return esp_vfs_pwrite(fd, src, size, offset);
}

View File

@ -0,0 +1,21 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <utime.h>
#include "esp_vfs.h"
int utime(const char *path, const struct utimbuf *times)
{
return esp_vfs_utime(path, times);
}

View File

@ -9,6 +9,6 @@ factory, 0, 0, 0x10000, 0xF0000
ota_0, 0, ota_0, , 64K
ota_1, 0, ota_1, , 64K
# flash_test partition used for SPI flash tests, WL FAT tests, and SPIFFS tests
flash_test, data, fat, , 528K
flash_test, data, fat, , 896K
# Note: still 1MB of a 4MB flash left free for some other purpose

1 # Special partition table for unit test app
9 ota_0, 0, ota_0, , 64K
10 ota_1, 0, ota_1, , 64K
11 # flash_test partition used for SPI flash tests, WL FAT tests, and SPIFFS tests
12 flash_test, data, fat, , 528K flash_test, data, fat, , 896K
13 # Note: still 1MB of a 4MB flash left free for some other purpose
14