feat(provisioning): Bring wifi_provisioning component and example from idf

Commit ID: dd3c0329
This commit is contained in:
yuanjm
2020-08-07 16:31:13 +08:00
parent e284837318
commit 08537e4238
98 changed files with 8856 additions and 562 deletions

View File

@ -1,10 +1,28 @@
set(COMPONENT_ADD_INCLUDEDIRS include)
set(COMPONENT_PRIV_INCLUDEDIRS proto-c ../protocomm/proto-c)
set(COMPONENT_SRCS "src/wifi_config.c"
set(srcs "src/wifi_config.c"
"src/wifi_scan.c"
"src/manager.c"
"src/handlers.c"
"src/scheme_softap.c"
"src/scheme_console.c"
"proto-c/wifi_config.pb-c.c"
"proto-c/wifi_scan.pb-c.c"
"proto-c/wifi_constants.pb-c.c")
set(COMPONENT_REQUIRES lwip)
set(COMPONENT_PRIV_REQUIRES protobuf-c protocomm)
if(CONFIG_BT_ENABLED)
if(CONFIG_BT_BLUEDROID_ENABLED OR CONFIG_BT_NIMBLE_ENABLED)
list(APPEND srcs
"src/scheme_ble.c")
endif()
endif()
register_component()
idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS include
PRIV_INCLUDE_DIRS src proto-c ../protocomm/proto-c
REQUIRES lwip protocomm
PRIV_REQUIRES protobuf-c bt mdns json esp_timer)
# To avoid warning for strncpy
set_source_files_properties(src/handlers.c src/scheme_softap.c
PROPERTIES COMPILE_FLAGS
-Wno-stringop-truncation
)

View File

@ -1,10 +1,18 @@
menu "Unified Provisioning"
menu "Wi-Fi Provisioning Manager"
config ENABLE_UNIFIED_PROVISIONING
bool "Enable Unified Provisioning"
default n
select MBEDTLS_CIPHER_MODE_CTR
select MBEDTLS_ECP_C
config WIFI_PROV_SCAN_MAX_ENTRIES
int "Max Wi-Fi Scan Result Entries"
default 16
range 1 255
help
This enables Unified Provisioning feature along with required components like Wifi-Provisioning, Protocomm and their mbedtls dependencies.
This sets the maximum number of entries of Wi-Fi scan results that will be kept by the provisioning manager
config WIFI_PROV_AUTOSTOP_TIMEOUT
int "Provisioning auto-stop timeout"
default 30
range 5 600
help
Time (in seconds) after which the Wi-Fi provisioning manager will auto-stop after connecting to
a Wi-Fi network successfully.
endmenu

View File

@ -1,8 +1,13 @@
COMPONENT_SRCDIRS :=
COMPONENT_ADD_INCLUDEDIRS :=
ifdef CONFIG_ENABLE_UNIFIED_PROVISIONING
COMPONENT_SRCDIRS := src proto-c
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_PRIV_INCLUDEDIRS := proto-c ../protocomm/proto-c/
COMPONENT_PRIV_INCLUDEDIRS := src proto-c ../protocomm/proto-c/
# To avoid warning for strncpy in "handlers.c" and "scheme_softap.c"
CPPFLAGS += -Wno-stringop-truncation
ifndef CONFIG_BT_BLUEDROID_ENABLED
ifndef CONFIG_BT_NIMBLE_ENABLED
COMPONENT_OBJEXCLUDE := src/scheme_ble.o
endif
endif

View File

@ -0,0 +1,558 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include "esp_event.h"
#include "wifi_provisioning/wifi_config.h"
#ifdef __cplusplus
extern "C" {
#endif
ESP_EVENT_DECLARE_BASE(WIFI_PROV_EVENT);
/**
* @brief Events generated by manager
*
* These events are generated in order of declaration and, for the
* stretch of time between initialization and de-initialization of
* the manager, each event is signaled only once
*/
typedef enum {
/**
* Emitted when the manager is initialized
*/
WIFI_PROV_INIT,
/**
* Indicates that provisioning has started
*/
WIFI_PROV_START,
/**
* Emitted when Wi-Fi AP credentials are received via `protocomm`
* endpoint `wifi_config`. The event data in this case is a pointer
* to the corresponding `wifi_sta_config_t` structure
*/
WIFI_PROV_CRED_RECV,
/**
* Emitted when device fails to connect to the AP of which the
* credentials were received earlier on event `WIFI_PROV_CRED_RECV`.
* The event data in this case is a pointer to the disconnection
* reason code with type `wifi_prov_sta_fail_reason_t`
*/
WIFI_PROV_CRED_FAIL,
/**
* Emitted when device successfully connects to the AP of which the
* credentials were received earlier on event `WIFI_PROV_CRED_RECV`
*/
WIFI_PROV_CRED_SUCCESS,
/**
* Signals that provisioning service has stopped
*/
WIFI_PROV_END,
/**
* Signals that manager has been de-initialized
*/
WIFI_PROV_DEINIT,
} wifi_prov_cb_event_t;
typedef void (*wifi_prov_cb_func_t)(void *user_data, wifi_prov_cb_event_t event, void *event_data);
/**
* @brief Event handler that is used by the manager while
* provisioning service is active
*/
typedef struct {
/**
* Callback function to be executed on provisioning events
*/
wifi_prov_cb_func_t event_cb;
/**
* User context data to pass as parameter to callback function
*/
void *user_data;
} wifi_prov_event_handler_t;
/**
* @brief Event handler can be set to none if not used
*/
#define WIFI_PROV_EVENT_HANDLER_NONE { \
.event_cb = NULL, \
.user_data = NULL \
}
/**
* @brief Structure for specifying the provisioning scheme to be
* followed by the manager
*
* @note Ready to use schemes are available:
* - wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
* - wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server
* - wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)
*/
typedef struct wifi_prov_scheme {
/**
* Function which is to be called by the manager when it is to
* start the provisioning service associated with a protocomm instance
* and a scheme specific configuration
*/
esp_err_t (*prov_start) (protocomm_t *pc, void *config);
/**
* Function which is to be called by the manager to stop the
* provisioning service previously associated with a protocomm instance
*/
esp_err_t (*prov_stop) (protocomm_t *pc);
/**
* Function which is to be called by the manager to generate
* a new configuration for the provisioning service, that is
* to be passed to prov_start()
*/
void *(*new_config) (void);
/**
* Function which is to be called by the manager to delete a
* configuration generated using new_config()
*/
void (*delete_config) (void *config);
/**
* Function which is to be called by the manager to set the
* service name and key values in the configuration structure
*/
esp_err_t (*set_config_service) (void *config, const char *service_name, const char *service_key);
/**
* Function which is to be called by the manager to set a protocomm endpoint
* with an identifying name and UUID in the configuration structure
*/
esp_err_t (*set_config_endpoint) (void *config, const char *endpoint_name, uint16_t uuid);
/**
* Sets mode of operation of Wi-Fi during provisioning
* This is set to :
* - WIFI_MODE_APSTA for SoftAP transport
* - WIFI_MODE_STA for BLE transport
*/
wifi_mode_t wifi_mode;
} wifi_prov_scheme_t;
/**
* @brief Structure for specifying the manager configuration
*/
typedef struct {
/**
* Provisioning scheme to use. Following schemes are already available:
* - wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
* - wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server + mDNS (optional)
* - wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)
*/
wifi_prov_scheme_t scheme;
/**
* Event handler required by the scheme for incorporating scheme specific
* behavior while provisioning manager is running. Various options may be
* provided by the scheme for setting this field. Use WIFI_PROV_EVENT_HANDLER_NONE
* when not used. When using scheme wifi_prov_scheme_ble, the following
* options are available:
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT
*/
wifi_prov_event_handler_t scheme_event_handler;
/**
* Event handler that can be set for the purpose of incorporating application
* specific behavior. Use WIFI_PROV_EVENT_HANDLER_NONE when not used.
*/
wifi_prov_event_handler_t app_event_handler;
} wifi_prov_mgr_config_t;
/**
* @brief Security modes supported by the Provisioning Manager.
*
* These are same as the security modes provided by protocomm
*/
typedef enum wifi_prov_security {
/**
* No security (plain-text communication)
*/
WIFI_PROV_SECURITY_0 = 0,
/**
* This secure communication mode consists of
* X25519 key exchange
* + proof of possession (pop) based authentication
* + AES-CTR encryption
*/
WIFI_PROV_SECURITY_1
} wifi_prov_security_t;
/**
* @brief Initialize provisioning manager instance
*
* Configures the manager and allocates internal resources
*
* Configuration specifies the provisioning scheme (transport)
* and event handlers
*
* Event WIFI_PROV_INIT is emitted right after initialization
* is complete
*
* @param[in] config Configuration structure
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Fail
*/
esp_err_t wifi_prov_mgr_init(wifi_prov_mgr_config_t config);
/**
* @brief Stop provisioning (if running) and release
* resource used by the manager
*
* Event WIFI_PROV_DEINIT is emitted right after de-initialization
* is finished
*
* If provisioning service is still active when this API is called,
* it first stops the service, hence emitting WIFI_PROV_END, and
* then performs the de-initialization
*/
void wifi_prov_mgr_deinit(void);
/**
* @brief Checks if device is provisioned
*
* This checks if Wi-Fi credentials are present on the NVS
*
* The Wi-Fi credentials are assumed to be kept in the same
* NVS namespace as used by esp_wifi component
*
* If one were to call esp_wifi_set_config() directly instead
* of going through the provisioning process, this function will
* still yield true (i.e. device will be found to be provisioned)
*
* @note Calling wifi_prov_mgr_start_provisioning() automatically
* resets the provision state, irrespective of what the
* state was prior to making the call.
*
* @param[out] provisioned True if provisioned, else false
*
* @return
* - ESP_OK : Retrieved provision state successfully
* - ESP_FAIL : Wi-Fi not initialized
* - ESP_ERR_INVALID_ARG : Null argument supplied
* - ESP_ERR_INVALID_STATE : Manager not initialized
*/
esp_err_t wifi_prov_mgr_is_provisioned(bool *provisioned);
/**
* @brief Start provisioning service
*
* This starts the provisioning service according to the scheme
* configured at the time of initialization. For scheme :
* - wifi_prov_scheme_ble : This starts protocomm_ble, which internally initializes
* BLE transport and starts GATT server for handling
* provisioning requests
* - wifi_prov_scheme_softap : This activates SoftAP mode of Wi-Fi and starts
* protocomm_httpd, which internally starts an HTTP
* server for handling provisioning requests (If mDNS is
* active it also starts advertising service with type
* _esp_wifi_prov._tcp)
*
* Event WIFI_PROV_START is emitted right after provisioning starts without failure
*
* @note This API will start provisioning service even if device is found to be
* already provisioned, i.e. wifi_prov_mgr_is_provisioned() yields true
*
* @param[in] security Specify which protocomm security scheme to use :
* - WIFI_PROV_SECURITY_0 : For no security
* - WIFI_PROV_SECURITY_1 : x25519 secure handshake for session
* establishment followed by AES-CTR encryption of provisioning messages
* @param[in] pop Pointer to proof of possession string (NULL if not needed). This
* is relevant only for protocomm security 1, in which case it is used
* for authenticating secure session
* @param[in] service_name Unique name of the service. This translates to:
* - Wi-Fi SSID when provisioning mode is softAP
* - Device name when provisioning mode is BLE
* @param[in] service_key Key required by client to access the service (NULL if not needed).
* This translates to:
* - Wi-Fi password when provisioning mode is softAP
* - ignored when provisioning mode is BLE
*
* @return
* - ESP_OK : Provisioning started successfully
* - ESP_FAIL : Failed to start provisioning service
* - ESP_ERR_INVALID_STATE : Provisioning manager not initialized or already started
*/
esp_err_t wifi_prov_mgr_start_provisioning(wifi_prov_security_t security, const char *pop,
const char *service_name, const char *service_key);
/**
* @brief Stop provisioning service
*
* If provisioning service is active, this API will initiate a process to stop
* the service and return. Once the service actually stops, the event WIFI_PROV_END
* will be emitted.
*
* If wifi_prov_mgr_deinit() is called without calling this API first, it will
* automatically stop the provisioning service and emit the WIFI_PROV_END, followed
* by WIFI_PROV_DEINIT, before returning.
*
* This API will generally be used along with wifi_prov_mgr_disable_auto_stop()
* in the scenario when the main application has registered its own endpoints,
* and wishes that the provisioning service is stopped only when some protocomm
* command from the client side application is received.
*
* Calling this API inside an endpoint handler, with sufficient cleanup_delay,
* will allow the response / acknowledgment to be sent successfully before the
* underlying protocomm service is stopped.
*
* Cleaup_delay is set when calling wifi_prov_mgr_disable_auto_stop().
* If not specified, it defaults to 1000ms.
*
* For straightforward cases, using this API is usually not necessary as
* provisioning is stopped automatically once WIFI_PROV_CRED_SUCCESS is emitted.
* Stopping is delayed (maximum 30 seconds) thus allowing the client side
* application to query for Wi-Fi state, i.e. after receiving the first query
* and sending `Wi-Fi state connected` response the service is stopped immediately.
*/
void wifi_prov_mgr_stop_provisioning(void);
/**
* @brief Wait for provisioning service to finish
*
* Calling this API will block until provisioning service is stopped
* i.e. till event WIFI_PROV_END is emitted.
*
* This will not block if provisioning is not started or not initialized.
*/
void wifi_prov_mgr_wait(void);
/**
* @brief Disable auto stopping of provisioning service upon completion
*
* By default, once provisioning is complete, the provisioning service is automatically
* stopped, and all endpoints (along with those registered by main application) are
* deactivated.
*
* This API is useful in the case when main application wishes to close provisioning service
* only after it receives some protocomm command from the client side app. For example, after
* connecting to Wi-Fi, the device may want to connect to the cloud, and only once that is
* successfully, the device is said to be fully configured. But, then it is upto the main
* application to explicitly call wifi_prov_mgr_stop_provisioning() later when the device is
* fully configured and the provisioning service is no longer required.
*
* @note This must be called before executing wifi_prov_mgr_start_provisioning()
*
* @param[in] cleanup_delay Sets the delay after which the actual cleanup of transport related
* resources is done after a call to wifi_prov_mgr_stop_provisioning()
* returns. Minimum allowed value is 100ms. If not specified, this will
* default to 1000ms.
*
* @return
* - ESP_OK : Success
* - ESP_ERR_INVALID_STATE : Manager not initialized or
* provisioning service already started
*/
esp_err_t wifi_prov_mgr_disable_auto_stop(uint32_t cleanup_delay);
/**
* @brief Set application version and capabilities in the JSON data returned by
* proto-ver endpoint
*
* This function can be called multiple times, to specify information about the various
* application specific services running on the device, identified by unique labels.
*
* The provisioning service itself registers an entry in the JSON data, by the label "prov",
* containing only provisioning service version and capabilities. Application services should
* use a label other than "prov" so as not to overwrite this.
*
* @note This must be called before executing wifi_prov_mgr_start_provisioning()
*
* @param[in] label String indicating the application name.
*
* @param[in] version String indicating the application version.
* There is no constraint on format.
*
* @param[in] capabilities Array of strings with capabilities.
* These could be used by the client side app to know
* the application registered endpoint capabilities
*
* @param[in] total_capabilities Size of capabilities array
*
* @return
* - ESP_OK : Success
* - ESP_ERR_INVALID_STATE : Manager not initialized or
* provisioning service already started
* - ESP_ERR_NO_MEM : Failed to allocate memory for version string
* - ESP_ERR_INVALID_ARG : Null argument
*/
esp_err_t wifi_prov_mgr_set_app_info(const char *label, const char *version,
const char**capabilities, size_t total_capabilities);
/**
* @brief Create an additional endpoint and allocate internal resources for it
*
* This API is to be called by the application if it wants to create an additional
* endpoint. All additional endpoints will be assigned UUIDs starting from 0xFF54
* and so on in the order of execution.
*
* protocomm handler for the created endpoint is to be registered later using
* wifi_prov_mgr_endpoint_register() after provisioning has started.
*
* @note This API can only be called BEFORE provisioning is started
*
* @note Additional endpoints can be used for configuring client provided
* parameters other than Wi-Fi credentials, that are necessary for the
* main application and hence must be set prior to starting the application
*
* @note After session establishment, the additional endpoints must be targeted
* first by the client side application before sending Wi-Fi configuration,
* because once Wi-Fi configuration finishes the provisioning service is
* stopped and hence all endpoints are unregistered
*
* @param[in] ep_name unique name of the endpoint
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Failure
*/
esp_err_t wifi_prov_mgr_endpoint_create(const char *ep_name);
/**
* @brief Register a handler for the previously created endpoint
*
* This API can be called by the application to register a protocomm handler
* to any endpoint that was created using wifi_prov_mgr_endpoint_create().
*
* @note This API can only be called AFTER provisioning has started
*
* @note Additional endpoints can be used for configuring client provided
* parameters other than Wi-Fi credentials, that are necessary for the
* main application and hence must be set prior to starting the application
*
* @note After session establishment, the additional endpoints must be targeted
* first by the client side application before sending Wi-Fi configuration,
* because once Wi-Fi configuration finishes the provisioning service is
* stopped and hence all endpoints are unregistered
*
* @param[in] ep_name Name of the endpoint
* @param[in] handler Endpoint handler function
* @param[in] user_ctx User data
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Failure
*/
esp_err_t wifi_prov_mgr_endpoint_register(const char *ep_name,
protocomm_req_handler_t handler,
void *user_ctx);
/**
* @brief Unregister the handler for an endpoint
*
* This API can be called if the application wants to selectively
* unregister the handler of an endpoint while the provisioning
* is still in progress.
*
* All the endpoint handlers are unregistered automatically when
* the provisioning stops.
*
* @param[in] ep_name Name of the endpoint
*/
void wifi_prov_mgr_endpoint_unregister(const char *ep_name);
/**
* @brief Event handler for provisioning manager
*
* This is called from the main event handler and controls the
* provisioning manager's internal state machine depending on
* incoming Wi-Fi events
*
* @note : This function is DEPRECATED, because events are now
* handled internally using the event loop library, esp_event.
* Calling this will do nothing and simply return ESP_OK.
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
*/
esp_err_t wifi_prov_mgr_event_handler(void *ctx, system_event_t *event) __attribute__ ((deprecated));
/**
* @brief Get state of Wi-Fi Station during provisioning
*
* @param[out] state Pointer to wifi_prov_sta_state_t
* variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved Wi-Fi state
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_get_wifi_state(wifi_prov_sta_state_t *state);
/**
* @brief Get reason code in case of Wi-Fi station
* disconnection during provisioning
*
* @param[out] reason Pointer to wifi_prov_sta_fail_reason_t
* variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved Wi-Fi disconnect reason
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t *reason);
/**
* @brief Runs Wi-Fi as Station with the supplied configuration
*
* Configures the Wi-Fi station mode to connect to the AP with
* SSID and password specified in config structure and sets
* Wi-Fi to run as station.
*
* This is automatically called by provisioning service upon
* receiving new credentials.
*
* If credentials are to be supplied to the manager via a
* different mode other than through protocomm, then this
* API needs to be called.
*
* Event WIFI_PROV_CRED_RECV is emitted after credentials have
* been applied and Wi-Fi station started
*
* @param[in] wifi_cfg Pointer to Wi-Fi configuration structure
*
* @return
* - ESP_OK : Wi-Fi configured and started successfully
* - ESP_FAIL : Failed to set configuration
*/
esp_err_t wifi_prov_mgr_configure_sta(wifi_config_t *wifi_cfg);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,82 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_ble.h>
#include "wifi_provisioning/manager.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Scheme that can be used by manager for provisioning
* over BLE transport with GATT server
*/
extern const wifi_prov_scheme_t wifi_prov_scheme_ble;
/* This scheme specific event handler is to be used when application
* doesn't require BT and BLE after provisioning has finished */
#define WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM { \
.event_cb = wifi_prov_scheme_ble_event_cb_free_btdm, \
.user_data = NULL \
}
/* This scheme specific event handler is to be used when application
* doesn't require BLE to be active after provisioning has finished */
#define WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE { \
.event_cb = wifi_prov_scheme_ble_event_cb_free_ble, \
.user_data = NULL \
}
/* This scheme specific event handler is to be used when application
* doesn't require BT to be active after provisioning has finished */
#define WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT { \
.event_cb = wifi_prov_scheme_ble_event_cb_free_bt, \
.user_data = NULL \
}
void wifi_prov_scheme_ble_event_cb_free_btdm(void *user_data, wifi_prov_cb_event_t event, void *event_data);
void wifi_prov_scheme_ble_event_cb_free_ble (void *user_data, wifi_prov_cb_event_t event, void *event_data);
void wifi_prov_scheme_ble_event_cb_free_bt (void *user_data, wifi_prov_cb_event_t event, void *event_data);
/**
* @brief Set the 128 bit GATT service UUID used for provisioning
*
* This API is used to override the default 128 bit provisioning
* service UUID, which is 0000ffff-0000-1000-8000-00805f9b34fb.
*
* This must be called before starting provisioning, i.e. before
* making a call to wifi_prov_mgr_start_provisioning(), otherwise
* the default UUID will be used.
*
* @note The data being pointed to by the argument must be valid
* atleast till provisioning is started. Upon start, the
* manager will store an internal copy of this UUID, and
* this data can be freed or invalidated afterwords.
*
* @param[in] uuid128 A custom 128 bit UUID
*
* @return
* - ESP_OK : Success
* - ESP_ERR_INVALID_ARG : Null argument
*/
esp_err_t wifi_prov_scheme_ble_set_service_uuid(uint8_t *uuid128);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,34 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_console.h>
#include "wifi_provisioning/manager.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Scheme that can be used by manager for provisioning
* over console (Serial UART)
*/
extern const wifi_prov_scheme_t wifi_prov_scheme_console;
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,47 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_httpd.h>
#include "wifi_provisioning/manager.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Scheme that can be used by manager for provisioning
* over SoftAP transport with HTTP server
*/
extern const wifi_prov_scheme_t wifi_prov_scheme_softap;
/**
*
* @brief Provide HTTPD Server handle externally.
*
* Useful in cases wherein applications need the webserver for some
* different operations, and do not want the wifi provisioning component
* to start/stop a new instance.
*
* @note This API should be called before wifi_prov_mgr_start_provisioning()
*
* @param[in] handle Handle to HTTPD server instance
*/
void wifi_prov_scheme_softap_set_httpd_handle(void *handle);
#ifdef __cplusplus
}
#endif

View File

@ -16,7 +16,7 @@
#define _WIFI_PROV_CONFIG_H_
#include <lwip/inet.h>
#include <stdlib.h>
#ifdef __cplusplus
extern "C" {
#endif
@ -76,7 +76,7 @@ typedef struct {
*/
typedef struct {
char ssid[33]; /*!< SSID of the AP to which the slave is to be connected */
char password[65]; /*!< Password of the AP */
char password[64]; /*!< Password of the AP */
char bssid[6]; /*!< BSSID of the AP */
uint8_t channel; /*!< Channel of the AP */
} wifi_prov_config_set_data_t;

View File

@ -0,0 +1,166 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _PROV_WIFI_SCAN_H_
#define _PROV_WIFI_SCAN_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <esp_wifi.h>
#define WIFI_SSID_LEN sizeof(((wifi_ap_record_t *)0)->ssid)
#define WIFI_BSSID_LEN sizeof(((wifi_ap_record_t *)0)->bssid)
/**
* @brief Type of context data passed to each get/set/apply handler
* function set in `wifi_prov_scan_handlers` structure.
*
* This is passed as an opaque pointer, thereby allowing it be defined
* later in application code as per requirements.
*/
typedef struct wifi_prov_scan_ctx wifi_prov_scan_ctx_t;
/**
* @brief Structure of entries in the scan results list
*/
typedef struct {
/**
* SSID of Wi-Fi AP
*/
char ssid[WIFI_SSID_LEN];
/**
* BSSID of Wi-Fi AP
*/
char bssid[WIFI_BSSID_LEN];
/**
* Wi-Fi channel number
*/
uint8_t channel;
/**
* Signal strength
*/
int rssi;
/**
* Wi-Fi security mode
*/
uint8_t auth;
} wifi_prov_scan_result_t;
/**
* @brief Internal handlers for receiving and responding to protocomm
* requests from client
*
* This is to be passed as priv_data for protocomm request handler
* (refer to `wifi_prov_scan_handler()`) when calling `protocomm_add_endpoint()`.
*/
typedef struct wifi_prov_scan_handlers {
/**
* Handler function called when scan start command is received
* with various scan parameters :
*
* blocking (input) - If true, the function should return only
* when the scanning is finished
*
* passive (input) - If true, scan is to be started in passive
* mode (this may be slower) instead of active mode
*
* group_channels (input) - This specifies whether to scan
* all channels in one go (when zero) or perform scanning of
* channels in groups, with 120ms delay between scanning of
* consecutive groups, and the value of this parameter sets the
* number of channels in each group. This is useful when transport
* mode is SoftAP, where scanning all channels in one go may not
* give the Wi-Fi driver enough time to send out beacons, and
* hence may cause disconnection with any connected stations.
* When scanning in groups, the manager will wait for atleast
* 120ms after completing scan on a group of channels, and thus
* allow the driver to send out the beacons. For example, given
* that the total number of Wi-Fi channels is 14, then setting
* group_channels to 4, will create 5 groups, with each group
* having 3 channels, except the last one which will have
* 14 % 3 = 2 channels. So, when scan is started, the first 3
* channels will be scanned, followed by a 120ms delay, and then
* the next 3 channels, and so on, until all the 14 channels have
* been scanned. One may need to adjust this parameter as having
* only few channels in a group may slow down the overall scan
* time, while having too many may again cause disconnection.
* Usually a value of 4 should work for most cases. Note that
* for any other mode of transport, e.g. BLE, this can be safely
* set to 0, and hence achieve the fastest overall scanning time.
*
* period_ms (input) - Scan parameter specifying how long to
* wait on each channel (in milli-seconds)
*/
esp_err_t (*scan_start)(bool blocking, bool passive,
uint8_t group_channels, uint32_t period_ms,
wifi_prov_scan_ctx_t **ctx);
/**
* Handler function called when scan status is requested. Status
* is given the parameters :
*
* scan_finished (output) - When scan has finished this returns true
*
* result_count (output) - This gives the total number of results
* obtained till now. If scan is yet happening this number will
* keep on updating
*/
esp_err_t (*scan_status)(bool *scan_finished,
uint16_t *result_count,
wifi_prov_scan_ctx_t **ctx);
/**
* Handler function called when scan result is requested. Parameters :
*
* scan_result - For fetching scan results. This can be called even
* if scan is still on going
*
* start_index (input) - Starting index from where to fetch the
* entries from the results list
*
* count (input) - Number of entries to fetch from the starting index
*
* entries (output) - List of entries returned. Each entry consists
* of ssid, channel and rssi information
*/
esp_err_t (*scan_result)(uint16_t result_index,
wifi_prov_scan_result_t *result,
wifi_prov_scan_ctx_t **ctx);
/**
* Context pointer to be passed to above handler functions upon invocation
*/
wifi_prov_scan_ctx_t *ctx;
} wifi_prov_scan_handlers_t;
/**
* @brief Handler for sending on demand Wi-Fi scan results
*
* This is to be registered as the `prov-scan` endpoint handler
* (protocomm `protocomm_req_handler_t`) using `protocomm_add_endpoint()`
*/
esp_err_t wifi_prov_scan_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,878 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: wifi_scan.proto */
/* Do not generate deprecated warnings for self */
#ifndef PROTOBUF_C__NO_DEPRECATED
#define PROTOBUF_C__NO_DEPRECATED
#endif
#include "wifi_scan.pb-c.h"
void cmd_scan_start__init
(CmdScanStart *message)
{
static const CmdScanStart init_value = CMD_SCAN_START__INIT;
*message = init_value;
}
size_t cmd_scan_start__get_packed_size
(const CmdScanStart *message)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_start__pack
(const CmdScanStart *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_start__pack_to_buffer
(const CmdScanStart *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanStart *
cmd_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanStart *)
protobuf_c_message_unpack (&cmd_scan_start__descriptor,
allocator, len, data);
}
void cmd_scan_start__free_unpacked
(CmdScanStart *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_start__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_start__init
(RespScanStart *message)
{
static const RespScanStart init_value = RESP_SCAN_START__INIT;
*message = init_value;
}
size_t resp_scan_start__get_packed_size
(const RespScanStart *message)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_start__pack
(const RespScanStart *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_start__pack_to_buffer
(const RespScanStart *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanStart *
resp_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanStart *)
protobuf_c_message_unpack (&resp_scan_start__descriptor,
allocator, len, data);
}
void resp_scan_start__free_unpacked
(RespScanStart *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_start__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void cmd_scan_status__init
(CmdScanStatus *message)
{
static const CmdScanStatus init_value = CMD_SCAN_STATUS__INIT;
*message = init_value;
}
size_t cmd_scan_status__get_packed_size
(const CmdScanStatus *message)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_status__pack
(const CmdScanStatus *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_status__pack_to_buffer
(const CmdScanStatus *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanStatus *
cmd_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanStatus *)
protobuf_c_message_unpack (&cmd_scan_status__descriptor,
allocator, len, data);
}
void cmd_scan_status__free_unpacked
(CmdScanStatus *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_status__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_status__init
(RespScanStatus *message)
{
static const RespScanStatus init_value = RESP_SCAN_STATUS__INIT;
*message = init_value;
}
size_t resp_scan_status__get_packed_size
(const RespScanStatus *message)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_status__pack
(const RespScanStatus *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_status__pack_to_buffer
(const RespScanStatus *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanStatus *
resp_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanStatus *)
protobuf_c_message_unpack (&resp_scan_status__descriptor,
allocator, len, data);
}
void resp_scan_status__free_unpacked
(RespScanStatus *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_status__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void cmd_scan_result__init
(CmdScanResult *message)
{
static const CmdScanResult init_value = CMD_SCAN_RESULT__INIT;
*message = init_value;
}
size_t cmd_scan_result__get_packed_size
(const CmdScanResult *message)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_result__pack
(const CmdScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_result__pack_to_buffer
(const CmdScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanResult *
cmd_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanResult *)
protobuf_c_message_unpack (&cmd_scan_result__descriptor,
allocator, len, data);
}
void cmd_scan_result__free_unpacked
(CmdScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void wi_fi_scan_result__init
(WiFiScanResult *message)
{
static const WiFiScanResult init_value = WI_FI_SCAN_RESULT__INIT;
*message = init_value;
}
size_t wi_fi_scan_result__get_packed_size
(const WiFiScanResult *message)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t wi_fi_scan_result__pack
(const WiFiScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t wi_fi_scan_result__pack_to_buffer
(const WiFiScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
WiFiScanResult *
wi_fi_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (WiFiScanResult *)
protobuf_c_message_unpack (&wi_fi_scan_result__descriptor,
allocator, len, data);
}
void wi_fi_scan_result__free_unpacked
(WiFiScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_result__init
(RespScanResult *message)
{
static const RespScanResult init_value = RESP_SCAN_RESULT__INIT;
*message = init_value;
}
size_t resp_scan_result__get_packed_size
(const RespScanResult *message)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_result__pack
(const RespScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_result__pack_to_buffer
(const RespScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanResult *
resp_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanResult *)
protobuf_c_message_unpack (&resp_scan_result__descriptor,
allocator, len, data);
}
void resp_scan_result__free_unpacked
(RespScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void wi_fi_scan_payload__init
(WiFiScanPayload *message)
{
static const WiFiScanPayload init_value = WI_FI_SCAN_PAYLOAD__INIT;
*message = init_value;
}
size_t wi_fi_scan_payload__get_packed_size
(const WiFiScanPayload *message)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t wi_fi_scan_payload__pack
(const WiFiScanPayload *message,
uint8_t *out)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t wi_fi_scan_payload__pack_to_buffer
(const WiFiScanPayload *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
WiFiScanPayload *
wi_fi_scan_payload__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (WiFiScanPayload *)
protobuf_c_message_unpack (&wi_fi_scan_payload__descriptor,
allocator, len, data);
}
void wi_fi_scan_payload__free_unpacked
(WiFiScanPayload *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
static const ProtobufCFieldDescriptor cmd_scan_start__field_descriptors[4] =
{
{
"blocking",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(CmdScanStart, blocking),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"passive",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(CmdScanStart, passive),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"group_channels",
3,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanStart, group_channels),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"period_ms",
4,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanStart, period_ms),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned cmd_scan_start__field_indices_by_name[] = {
0, /* field[0] = blocking */
2, /* field[2] = group_channels */
1, /* field[1] = passive */
3, /* field[3] = period_ms */
};
static const ProtobufCIntRange cmd_scan_start__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 4 }
};
const ProtobufCMessageDescriptor cmd_scan_start__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanStart",
"CmdScanStart",
"CmdScanStart",
"",
sizeof(CmdScanStart),
4,
cmd_scan_start__field_descriptors,
cmd_scan_start__field_indices_by_name,
1, cmd_scan_start__number_ranges,
(ProtobufCMessageInit) cmd_scan_start__init,
NULL,NULL,NULL /* reserved[123] */
};
#define resp_scan_start__field_descriptors NULL
#define resp_scan_start__field_indices_by_name NULL
#define resp_scan_start__number_ranges NULL
const ProtobufCMessageDescriptor resp_scan_start__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanStart",
"RespScanStart",
"RespScanStart",
"",
sizeof(RespScanStart),
0,
resp_scan_start__field_descriptors,
resp_scan_start__field_indices_by_name,
0, resp_scan_start__number_ranges,
(ProtobufCMessageInit) resp_scan_start__init,
NULL,NULL,NULL /* reserved[123] */
};
#define cmd_scan_status__field_descriptors NULL
#define cmd_scan_status__field_indices_by_name NULL
#define cmd_scan_status__number_ranges NULL
const ProtobufCMessageDescriptor cmd_scan_status__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanStatus",
"CmdScanStatus",
"CmdScanStatus",
"",
sizeof(CmdScanStatus),
0,
cmd_scan_status__field_descriptors,
cmd_scan_status__field_indices_by_name,
0, cmd_scan_status__number_ranges,
(ProtobufCMessageInit) cmd_scan_status__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor resp_scan_status__field_descriptors[2] =
{
{
"scan_finished",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(RespScanStatus, scan_finished),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"result_count",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(RespScanStatus, result_count),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned resp_scan_status__field_indices_by_name[] = {
1, /* field[1] = result_count */
0, /* field[0] = scan_finished */
};
static const ProtobufCIntRange resp_scan_status__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor resp_scan_status__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanStatus",
"RespScanStatus",
"RespScanStatus",
"",
sizeof(RespScanStatus),
2,
resp_scan_status__field_descriptors,
resp_scan_status__field_indices_by_name,
1, resp_scan_status__number_ranges,
(ProtobufCMessageInit) resp_scan_status__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor cmd_scan_result__field_descriptors[2] =
{
{
"start_index",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanResult, start_index),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"count",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanResult, count),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned cmd_scan_result__field_indices_by_name[] = {
1, /* field[1] = count */
0, /* field[0] = start_index */
};
static const ProtobufCIntRange cmd_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor cmd_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanResult",
"CmdScanResult",
"CmdScanResult",
"",
sizeof(CmdScanResult),
2,
cmd_scan_result__field_descriptors,
cmd_scan_result__field_indices_by_name,
1, cmd_scan_result__number_ranges,
(ProtobufCMessageInit) cmd_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor wi_fi_scan_result__field_descriptors[5] =
{
{
"ssid",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BYTES,
0, /* quantifier_offset */
offsetof(WiFiScanResult, ssid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"channel",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(WiFiScanResult, channel),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"rssi",
3,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_INT32,
0, /* quantifier_offset */
offsetof(WiFiScanResult, rssi),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"bssid",
4,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BYTES,
0, /* quantifier_offset */
offsetof(WiFiScanResult, bssid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"auth",
5,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanResult, auth),
&wifi_auth_mode__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned wi_fi_scan_result__field_indices_by_name[] = {
4, /* field[4] = auth */
3, /* field[3] = bssid */
1, /* field[1] = channel */
2, /* field[2] = rssi */
0, /* field[0] = ssid */
};
static const ProtobufCIntRange wi_fi_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 5 }
};
const ProtobufCMessageDescriptor wi_fi_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"WiFiScanResult",
"WiFiScanResult",
"WiFiScanResult",
"",
sizeof(WiFiScanResult),
5,
wi_fi_scan_result__field_descriptors,
wi_fi_scan_result__field_indices_by_name,
1, wi_fi_scan_result__number_ranges,
(ProtobufCMessageInit) wi_fi_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor resp_scan_result__field_descriptors[1] =
{
{
"entries",
1,
PROTOBUF_C_LABEL_REPEATED,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(RespScanResult, n_entries),
offsetof(RespScanResult, entries),
&wi_fi_scan_result__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned resp_scan_result__field_indices_by_name[] = {
0, /* field[0] = entries */
};
static const ProtobufCIntRange resp_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 1 }
};
const ProtobufCMessageDescriptor resp_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanResult",
"RespScanResult",
"RespScanResult",
"",
sizeof(RespScanResult),
1,
resp_scan_result__field_descriptors,
resp_scan_result__field_indices_by_name,
1, resp_scan_result__number_ranges,
(ProtobufCMessageInit) resp_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor wi_fi_scan_payload__field_descriptors[8] =
{
{
"msg",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanPayload, msg),
&wi_fi_scan_msg_type__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"status",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanPayload, status),
&status__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_start",
10,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_start),
&cmd_scan_start__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_start",
11,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_start),
&resp_scan_start__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_status",
12,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_status),
&cmd_scan_status__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_status",
13,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_status),
&resp_scan_status__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_result",
14,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_result),
&cmd_scan_result__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_result",
15,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_result),
&resp_scan_result__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned wi_fi_scan_payload__field_indices_by_name[] = {
6, /* field[6] = cmd_scan_result */
2, /* field[2] = cmd_scan_start */
4, /* field[4] = cmd_scan_status */
0, /* field[0] = msg */
7, /* field[7] = resp_scan_result */
3, /* field[3] = resp_scan_start */
5, /* field[5] = resp_scan_status */
1, /* field[1] = status */
};
static const ProtobufCIntRange wi_fi_scan_payload__number_ranges[2 + 1] =
{
{ 1, 0 },
{ 10, 2 },
{ 0, 8 }
};
const ProtobufCMessageDescriptor wi_fi_scan_payload__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"WiFiScanPayload",
"WiFiScanPayload",
"WiFiScanPayload",
"",
sizeof(WiFiScanPayload),
8,
wi_fi_scan_payload__field_descriptors,
wi_fi_scan_payload__field_indices_by_name,
2, wi_fi_scan_payload__number_ranges,
(ProtobufCMessageInit) wi_fi_scan_payload__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCEnumValue wi_fi_scan_msg_type__enum_values_by_number[6] =
{
{ "TypeCmdScanStart", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart", 0 },
{ "TypeRespScanStart", "WI_FI_SCAN_MSG_TYPE__TypeRespScanStart", 1 },
{ "TypeCmdScanStatus", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus", 2 },
{ "TypeRespScanStatus", "WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus", 3 },
{ "TypeCmdScanResult", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult", 4 },
{ "TypeRespScanResult", "WI_FI_SCAN_MSG_TYPE__TypeRespScanResult", 5 },
};
static const ProtobufCIntRange wi_fi_scan_msg_type__value_ranges[] = {
{0, 0},{0, 6}
};
static const ProtobufCEnumValueIndex wi_fi_scan_msg_type__enum_values_by_name[6] =
{
{ "TypeCmdScanResult", 4 },
{ "TypeCmdScanStart", 0 },
{ "TypeCmdScanStatus", 2 },
{ "TypeRespScanResult", 5 },
{ "TypeRespScanStart", 1 },
{ "TypeRespScanStatus", 3 },
};
const ProtobufCEnumDescriptor wi_fi_scan_msg_type__descriptor =
{
PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC,
"WiFiScanMsgType",
"WiFiScanMsgType",
"WiFiScanMsgType",
"",
6,
wi_fi_scan_msg_type__enum_values_by_number,
6,
wi_fi_scan_msg_type__enum_values_by_name,
1,
wi_fi_scan_msg_type__value_ranges,
NULL,NULL,NULL,NULL /* reserved[1234] */
};

View File

@ -0,0 +1,350 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: wifi_scan.proto */
#ifndef PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED
#define PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED
#include <protobuf-c/protobuf-c.h>
PROTOBUF_C__BEGIN_DECLS
#if PROTOBUF_C_VERSION_NUMBER < 1003000
# error This file was generated by a newer version of protoc-c which is incompatible with your libprotobuf-c headers. Please update your headers.
#elif 1003001 < PROTOBUF_C_MIN_COMPILER_VERSION
# error This file was generated by an older version of protoc-c which is incompatible with your libprotobuf-c headers. Please regenerate this file with a newer version of protoc-c.
#endif
#include "constants.pb-c.h"
#include "wifi_constants.pb-c.h"
typedef struct _CmdScanStart CmdScanStart;
typedef struct _RespScanStart RespScanStart;
typedef struct _CmdScanStatus CmdScanStatus;
typedef struct _RespScanStatus RespScanStatus;
typedef struct _CmdScanResult CmdScanResult;
typedef struct _WiFiScanResult WiFiScanResult;
typedef struct _RespScanResult RespScanResult;
typedef struct _WiFiScanPayload WiFiScanPayload;
/* --- enums --- */
typedef enum _WiFiScanMsgType {
WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart = 0,
WI_FI_SCAN_MSG_TYPE__TypeRespScanStart = 1,
WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus = 2,
WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus = 3,
WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult = 4,
WI_FI_SCAN_MSG_TYPE__TypeRespScanResult = 5
PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(WI_FI_SCAN_MSG_TYPE)
} WiFiScanMsgType;
/* --- messages --- */
struct _CmdScanStart
{
ProtobufCMessage base;
protobuf_c_boolean blocking;
protobuf_c_boolean passive;
uint32_t group_channels;
uint32_t period_ms;
};
#define CMD_SCAN_START__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_start__descriptor) \
, 0, 0, 0, 0 }
struct _RespScanStart
{
ProtobufCMessage base;
};
#define RESP_SCAN_START__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_start__descriptor) \
}
struct _CmdScanStatus
{
ProtobufCMessage base;
};
#define CMD_SCAN_STATUS__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_status__descriptor) \
}
struct _RespScanStatus
{
ProtobufCMessage base;
protobuf_c_boolean scan_finished;
uint32_t result_count;
};
#define RESP_SCAN_STATUS__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_status__descriptor) \
, 0, 0 }
struct _CmdScanResult
{
ProtobufCMessage base;
uint32_t start_index;
uint32_t count;
};
#define CMD_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_result__descriptor) \
, 0, 0 }
struct _WiFiScanResult
{
ProtobufCMessage base;
ProtobufCBinaryData ssid;
uint32_t channel;
int32_t rssi;
ProtobufCBinaryData bssid;
WifiAuthMode auth;
};
#define WI_FI_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&wi_fi_scan_result__descriptor) \
, {0,NULL}, 0, 0, {0,NULL}, WIFI_AUTH_MODE__Open }
struct _RespScanResult
{
ProtobufCMessage base;
size_t n_entries;
WiFiScanResult **entries;
};
#define RESP_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_result__descriptor) \
, 0,NULL }
typedef enum {
WI_FI_SCAN_PAYLOAD__PAYLOAD__NOT_SET = 0,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_START = 10,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_START = 11,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_STATUS = 12,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_STATUS = 13,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_RESULT = 14,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_RESULT = 15
PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(WI_FI_SCAN_PAYLOAD__PAYLOAD)
} WiFiScanPayload__PayloadCase;
struct _WiFiScanPayload
{
ProtobufCMessage base;
WiFiScanMsgType msg;
Status status;
WiFiScanPayload__PayloadCase payload_case;
union {
CmdScanStart *cmd_scan_start;
RespScanStart *resp_scan_start;
CmdScanStatus *cmd_scan_status;
RespScanStatus *resp_scan_status;
CmdScanResult *cmd_scan_result;
RespScanResult *resp_scan_result;
};
};
#define WI_FI_SCAN_PAYLOAD__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&wi_fi_scan_payload__descriptor) \
, WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart, STATUS__Success, WI_FI_SCAN_PAYLOAD__PAYLOAD__NOT_SET, {0} }
/* CmdScanStart methods */
void cmd_scan_start__init
(CmdScanStart *message);
size_t cmd_scan_start__get_packed_size
(const CmdScanStart *message);
size_t cmd_scan_start__pack
(const CmdScanStart *message,
uint8_t *out);
size_t cmd_scan_start__pack_to_buffer
(const CmdScanStart *message,
ProtobufCBuffer *buffer);
CmdScanStart *
cmd_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_start__free_unpacked
(CmdScanStart *message,
ProtobufCAllocator *allocator);
/* RespScanStart methods */
void resp_scan_start__init
(RespScanStart *message);
size_t resp_scan_start__get_packed_size
(const RespScanStart *message);
size_t resp_scan_start__pack
(const RespScanStart *message,
uint8_t *out);
size_t resp_scan_start__pack_to_buffer
(const RespScanStart *message,
ProtobufCBuffer *buffer);
RespScanStart *
resp_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_start__free_unpacked
(RespScanStart *message,
ProtobufCAllocator *allocator);
/* CmdScanStatus methods */
void cmd_scan_status__init
(CmdScanStatus *message);
size_t cmd_scan_status__get_packed_size
(const CmdScanStatus *message);
size_t cmd_scan_status__pack
(const CmdScanStatus *message,
uint8_t *out);
size_t cmd_scan_status__pack_to_buffer
(const CmdScanStatus *message,
ProtobufCBuffer *buffer);
CmdScanStatus *
cmd_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_status__free_unpacked
(CmdScanStatus *message,
ProtobufCAllocator *allocator);
/* RespScanStatus methods */
void resp_scan_status__init
(RespScanStatus *message);
size_t resp_scan_status__get_packed_size
(const RespScanStatus *message);
size_t resp_scan_status__pack
(const RespScanStatus *message,
uint8_t *out);
size_t resp_scan_status__pack_to_buffer
(const RespScanStatus *message,
ProtobufCBuffer *buffer);
RespScanStatus *
resp_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_status__free_unpacked
(RespScanStatus *message,
ProtobufCAllocator *allocator);
/* CmdScanResult methods */
void cmd_scan_result__init
(CmdScanResult *message);
size_t cmd_scan_result__get_packed_size
(const CmdScanResult *message);
size_t cmd_scan_result__pack
(const CmdScanResult *message,
uint8_t *out);
size_t cmd_scan_result__pack_to_buffer
(const CmdScanResult *message,
ProtobufCBuffer *buffer);
CmdScanResult *
cmd_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_result__free_unpacked
(CmdScanResult *message,
ProtobufCAllocator *allocator);
/* WiFiScanResult methods */
void wi_fi_scan_result__init
(WiFiScanResult *message);
size_t wi_fi_scan_result__get_packed_size
(const WiFiScanResult *message);
size_t wi_fi_scan_result__pack
(const WiFiScanResult *message,
uint8_t *out);
size_t wi_fi_scan_result__pack_to_buffer
(const WiFiScanResult *message,
ProtobufCBuffer *buffer);
WiFiScanResult *
wi_fi_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void wi_fi_scan_result__free_unpacked
(WiFiScanResult *message,
ProtobufCAllocator *allocator);
/* RespScanResult methods */
void resp_scan_result__init
(RespScanResult *message);
size_t resp_scan_result__get_packed_size
(const RespScanResult *message);
size_t resp_scan_result__pack
(const RespScanResult *message,
uint8_t *out);
size_t resp_scan_result__pack_to_buffer
(const RespScanResult *message,
ProtobufCBuffer *buffer);
RespScanResult *
resp_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_result__free_unpacked
(RespScanResult *message,
ProtobufCAllocator *allocator);
/* WiFiScanPayload methods */
void wi_fi_scan_payload__init
(WiFiScanPayload *message);
size_t wi_fi_scan_payload__get_packed_size
(const WiFiScanPayload *message);
size_t wi_fi_scan_payload__pack
(const WiFiScanPayload *message,
uint8_t *out);
size_t wi_fi_scan_payload__pack_to_buffer
(const WiFiScanPayload *message,
ProtobufCBuffer *buffer);
WiFiScanPayload *
wi_fi_scan_payload__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void wi_fi_scan_payload__free_unpacked
(WiFiScanPayload *message,
ProtobufCAllocator *allocator);
/* --- per-message closures --- */
typedef void (*CmdScanStart_Closure)
(const CmdScanStart *message,
void *closure_data);
typedef void (*RespScanStart_Closure)
(const RespScanStart *message,
void *closure_data);
typedef void (*CmdScanStatus_Closure)
(const CmdScanStatus *message,
void *closure_data);
typedef void (*RespScanStatus_Closure)
(const RespScanStatus *message,
void *closure_data);
typedef void (*CmdScanResult_Closure)
(const CmdScanResult *message,
void *closure_data);
typedef void (*WiFiScanResult_Closure)
(const WiFiScanResult *message,
void *closure_data);
typedef void (*RespScanResult_Closure)
(const RespScanResult *message,
void *closure_data);
typedef void (*WiFiScanPayload_Closure)
(const WiFiScanPayload *message,
void *closure_data);
/* --- services --- */
/* --- descriptors --- */
extern const ProtobufCEnumDescriptor wi_fi_scan_msg_type__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_start__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_start__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_status__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_status__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_result__descriptor;
extern const ProtobufCMessageDescriptor wi_fi_scan_result__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_result__descriptor;
extern const ProtobufCMessageDescriptor wi_fi_scan_payload__descriptor;
PROTOBUF_C__END_DECLS
#endif /* PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED */

View File

@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.5)
set(PROTO_COMPILER "protoc")
set(PROTO_C_COMPILER "protoc-c")
set(C_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../proto-c")
set(PY_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../python")
set(PROTOCOMM_INCL_PATH "${CMAKE_CURRENT_LIST_DIR}/../../protocomm/proto")
set(PROTO_SRCS "wifi_constants.proto"
"wifi_config.proto"
"wifi_scan.proto")
add_custom_target(c_proto
COMMAND ${PROTO_C_COMPILER} --c_out=${C_OUT_PATH} -I . -I ${PROTOCOMM_INCL_PATH} ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(python_proto
COMMAND ${PROTO_COMPILER} --python_out=${PY_OUT_PATH} -I . -I ${PROTOCOMM_INCL_PATH} ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(proto ALL
DEPENDS c_proto python_proto
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)

View File

@ -1,7 +1,28 @@
# Protobuf files for defining Wi-Fi config-data packet structures
# Protobuf files for defining Wi-Fi provisioning packet structures
`wifi_provisioning` uses Google Protobuf for language, transport and architecture agnostic protocol communication. These proto files define the protocomm packet structure, separated across multiple files:
* wifi_contants.proto - Defines the various enums for indicating state of Wi-Fi (connected / disconnect / connecting), diconnect reasons, auth modes, etc.
* wifi_config.proto - Defines Wi-Fi configuration structures and commands for setting credentials (SSID, passphrase, BSSID), applying credentials and getting connection state.
* wifi_scan.proto - Defines Wi-Fi scan commands and result structures
Note : These proto files are not automatically compiled during the build process.
Run "make" (Optional) to generate the respective C and Python files. The generated C files are used by protocomm itself to create, delete and manipulate transaction packets. The generated Python files can be used by python based applications for implementing client side interface to protocomm layer.
# Compilation
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under "protocomm/proto-c" and "protocomm/python" directories, and thus running make (and installing the Protobuf compilers) is optional.
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under `components/wifi_provisioning/proto-c` and `components/wifi_provisioning/python` directories, and thus running cmake / make (and installing the Protobuf compilers) is optional.
If using `cmake` follow the below steps. If using `make`, jump to Step 2 directly.
## Step 1 (Only for cmake)
When using cmake, first create a build directory and call cmake from inside:
```
mkdir build
cd build
cmake ..
```
## Step 2
Simply run `make` to generate the respective C and Python files. The newly created files will overwrite those under `components/wifi_provisioning/proto-c` and `components/wifi_provisioning/python`

View File

@ -0,0 +1,63 @@
syntax = "proto3";
import "constants.proto";
import "wifi_constants.proto";
message CmdScanStart {
bool blocking = 1;
bool passive = 2;
uint32 group_channels = 3;
uint32 period_ms = 4;
}
message RespScanStart {
}
message CmdScanStatus {
}
message RespScanStatus {
bool scan_finished = 1;
uint32 result_count = 2;
}
message CmdScanResult {
uint32 start_index = 1;
uint32 count = 2;
}
message WiFiScanResult {
bytes ssid = 1;
uint32 channel = 2;
int32 rssi = 3;
bytes bssid = 4;
WifiAuthMode auth = 5;
}
message RespScanResult {
repeated WiFiScanResult entries = 1;
}
enum WiFiScanMsgType {
TypeCmdScanStart = 0;
TypeRespScanStart = 1;
TypeCmdScanStatus = 2;
TypeRespScanStatus = 3;
TypeCmdScanResult = 4;
TypeRespScanResult = 5;
}
message WiFiScanPayload {
WiFiScanMsgType msg = 1;
Status status = 2;
oneof payload {
CmdScanStart cmd_scan_start = 10;
RespScanStart resp_scan_start = 11;
CmdScanStatus cmd_scan_status = 12;
RespScanStatus resp_scan_status = 13;
CmdScanResult cmd_scan_result = 14;
RespScanResult resp_scan_result = 15;
}
}

View File

@ -0,0 +1,522 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: wifi_scan.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf.internal import enum_type_wrapper
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
import constants_pb2 as constants__pb2
import wifi_constants_pb2 as wifi__constants__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='wifi_scan.proto',
package='',
syntax='proto3',
serialized_options=None,
serialized_pb=_b('\n\x0fwifi_scan.proto\x1a\x0f\x63onstants.proto\x1a\x14wifi_constants.proto\"\\\n\x0c\x43mdScanStart\x12\x10\n\x08\x62locking\x18\x01 \x01(\x08\x12\x0f\n\x07passive\x18\x02 \x01(\x08\x12\x16\n\x0egroup_channels\x18\x03 \x01(\r\x12\x11\n\tperiod_ms\x18\x04 \x01(\r\"\x0f\n\rRespScanStart\"\x0f\n\rCmdScanStatus\"=\n\x0eRespScanStatus\x12\x15\n\rscan_finished\x18\x01 \x01(\x08\x12\x14\n\x0cresult_count\x18\x02 \x01(\r\"3\n\rCmdScanResult\x12\x13\n\x0bstart_index\x18\x01 \x01(\r\x12\r\n\x05\x63ount\x18\x02 \x01(\r\"i\n\x0eWiFiScanResult\x12\x0c\n\x04ssid\x18\x01 \x01(\x0c\x12\x0f\n\x07\x63hannel\x18\x02 \x01(\r\x12\x0c\n\x04rssi\x18\x03 \x01(\x05\x12\r\n\x05\x62ssid\x18\x04 \x01(\x0c\x12\x1b\n\x04\x61uth\x18\x05 \x01(\x0e\x32\r.WifiAuthMode\"2\n\x0eRespScanResult\x12 \n\x07\x65ntries\x18\x01 \x03(\x0b\x32\x0f.WiFiScanResult\"\xd8\x02\n\x0fWiFiScanPayload\x12\x1d\n\x03msg\x18\x01 \x01(\x0e\x32\x10.WiFiScanMsgType\x12\x17\n\x06status\x18\x02 \x01(\x0e\x32\x07.Status\x12\'\n\x0e\x63md_scan_start\x18\n \x01(\x0b\x32\r.CmdScanStartH\x00\x12)\n\x0fresp_scan_start\x18\x0b \x01(\x0b\x32\x0e.RespScanStartH\x00\x12)\n\x0f\x63md_scan_status\x18\x0c \x01(\x0b\x32\x0e.CmdScanStatusH\x00\x12+\n\x10resp_scan_status\x18\r \x01(\x0b\x32\x0f.RespScanStatusH\x00\x12)\n\x0f\x63md_scan_result\x18\x0e \x01(\x0b\x32\x0e.CmdScanResultH\x00\x12+\n\x10resp_scan_result\x18\x0f \x01(\x0b\x32\x0f.RespScanResultH\x00\x42\t\n\x07payload*\x9c\x01\n\x0fWiFiScanMsgType\x12\x14\n\x10TypeCmdScanStart\x10\x00\x12\x15\n\x11TypeRespScanStart\x10\x01\x12\x15\n\x11TypeCmdScanStatus\x10\x02\x12\x16\n\x12TypeRespScanStatus\x10\x03\x12\x15\n\x11TypeCmdScanResult\x10\x04\x12\x16\n\x12TypeRespScanResult\x10\x05\x62\x06proto3')
,
dependencies=[constants__pb2.DESCRIPTOR,wifi__constants__pb2.DESCRIPTOR,])
_WIFISCANMSGTYPE = _descriptor.EnumDescriptor(
name='WiFiScanMsgType',
full_name='WiFiScanMsgType',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='TypeCmdScanStart', index=0, number=0,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanStart', index=1, number=1,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeCmdScanStatus', index=2, number=2,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanStatus', index=3, number=3,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeCmdScanResult', index=4, number=4,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanResult', index=5, number=5,
serialized_options=None,
type=None),
],
containing_type=None,
serialized_options=None,
serialized_start=809,
serialized_end=965,
)
_sym_db.RegisterEnumDescriptor(_WIFISCANMSGTYPE)
WiFiScanMsgType = enum_type_wrapper.EnumTypeWrapper(_WIFISCANMSGTYPE)
TypeCmdScanStart = 0
TypeRespScanStart = 1
TypeCmdScanStatus = 2
TypeRespScanStatus = 3
TypeCmdScanResult = 4
TypeRespScanResult = 5
_CMDSCANSTART = _descriptor.Descriptor(
name='CmdScanStart',
full_name='CmdScanStart',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='blocking', full_name='CmdScanStart.blocking', index=0,
number=1, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='passive', full_name='CmdScanStart.passive', index=1,
number=2, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='group_channels', full_name='CmdScanStart.group_channels', index=2,
number=3, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='period_ms', full_name='CmdScanStart.period_ms', index=3,
number=4, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=58,
serialized_end=150,
)
_RESPSCANSTART = _descriptor.Descriptor(
name='RespScanStart',
full_name='RespScanStart',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=152,
serialized_end=167,
)
_CMDSCANSTATUS = _descriptor.Descriptor(
name='CmdScanStatus',
full_name='CmdScanStatus',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=169,
serialized_end=184,
)
_RESPSCANSTATUS = _descriptor.Descriptor(
name='RespScanStatus',
full_name='RespScanStatus',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='scan_finished', full_name='RespScanStatus.scan_finished', index=0,
number=1, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='result_count', full_name='RespScanStatus.result_count', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=186,
serialized_end=247,
)
_CMDSCANRESULT = _descriptor.Descriptor(
name='CmdScanResult',
full_name='CmdScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='start_index', full_name='CmdScanResult.start_index', index=0,
number=1, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='count', full_name='CmdScanResult.count', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=249,
serialized_end=300,
)
_WIFISCANRESULT = _descriptor.Descriptor(
name='WiFiScanResult',
full_name='WiFiScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='ssid', full_name='WiFiScanResult.ssid', index=0,
number=1, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='channel', full_name='WiFiScanResult.channel', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='rssi', full_name='WiFiScanResult.rssi', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='bssid', full_name='WiFiScanResult.bssid', index=3,
number=4, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='auth', full_name='WiFiScanResult.auth', index=4,
number=5, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=302,
serialized_end=407,
)
_RESPSCANRESULT = _descriptor.Descriptor(
name='RespScanResult',
full_name='RespScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='entries', full_name='RespScanResult.entries', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=409,
serialized_end=459,
)
_WIFISCANPAYLOAD = _descriptor.Descriptor(
name='WiFiScanPayload',
full_name='WiFiScanPayload',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='msg', full_name='WiFiScanPayload.msg', index=0,
number=1, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='status', full_name='WiFiScanPayload.status', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_start', full_name='WiFiScanPayload.cmd_scan_start', index=2,
number=10, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_start', full_name='WiFiScanPayload.resp_scan_start', index=3,
number=11, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_status', full_name='WiFiScanPayload.cmd_scan_status', index=4,
number=12, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_status', full_name='WiFiScanPayload.resp_scan_status', index=5,
number=13, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_result', full_name='WiFiScanPayload.cmd_scan_result', index=6,
number=14, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_result', full_name='WiFiScanPayload.resp_scan_result', index=7,
number=15, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
_descriptor.OneofDescriptor(
name='payload', full_name='WiFiScanPayload.payload',
index=0, containing_type=None, fields=[]),
],
serialized_start=462,
serialized_end=806,
)
_WIFISCANRESULT.fields_by_name['auth'].enum_type = wifi__constants__pb2._WIFIAUTHMODE
_RESPSCANRESULT.fields_by_name['entries'].message_type = _WIFISCANRESULT
_WIFISCANPAYLOAD.fields_by_name['msg'].enum_type = _WIFISCANMSGTYPE
_WIFISCANPAYLOAD.fields_by_name['status'].enum_type = constants__pb2._STATUS
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'].message_type = _CMDSCANSTART
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'].message_type = _RESPSCANSTART
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'].message_type = _CMDSCANSTATUS
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'].message_type = _RESPSCANSTATUS
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'].message_type = _CMDSCANRESULT
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'].message_type = _RESPSCANRESULT
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
DESCRIPTOR.message_types_by_name['CmdScanStart'] = _CMDSCANSTART
DESCRIPTOR.message_types_by_name['RespScanStart'] = _RESPSCANSTART
DESCRIPTOR.message_types_by_name['CmdScanStatus'] = _CMDSCANSTATUS
DESCRIPTOR.message_types_by_name['RespScanStatus'] = _RESPSCANSTATUS
DESCRIPTOR.message_types_by_name['CmdScanResult'] = _CMDSCANRESULT
DESCRIPTOR.message_types_by_name['WiFiScanResult'] = _WIFISCANRESULT
DESCRIPTOR.message_types_by_name['RespScanResult'] = _RESPSCANRESULT
DESCRIPTOR.message_types_by_name['WiFiScanPayload'] = _WIFISCANPAYLOAD
DESCRIPTOR.enum_types_by_name['WiFiScanMsgType'] = _WIFISCANMSGTYPE
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
CmdScanStart = _reflection.GeneratedProtocolMessageType('CmdScanStart', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANSTART,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanStart)
))
_sym_db.RegisterMessage(CmdScanStart)
RespScanStart = _reflection.GeneratedProtocolMessageType('RespScanStart', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANSTART,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanStart)
))
_sym_db.RegisterMessage(RespScanStart)
CmdScanStatus = _reflection.GeneratedProtocolMessageType('CmdScanStatus', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANSTATUS,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanStatus)
))
_sym_db.RegisterMessage(CmdScanStatus)
RespScanStatus = _reflection.GeneratedProtocolMessageType('RespScanStatus', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANSTATUS,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanStatus)
))
_sym_db.RegisterMessage(RespScanStatus)
CmdScanResult = _reflection.GeneratedProtocolMessageType('CmdScanResult', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanResult)
))
_sym_db.RegisterMessage(CmdScanResult)
WiFiScanResult = _reflection.GeneratedProtocolMessageType('WiFiScanResult', (_message.Message,), dict(
DESCRIPTOR = _WIFISCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:WiFiScanResult)
))
_sym_db.RegisterMessage(WiFiScanResult)
RespScanResult = _reflection.GeneratedProtocolMessageType('RespScanResult', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanResult)
))
_sym_db.RegisterMessage(RespScanResult)
WiFiScanPayload = _reflection.GeneratedProtocolMessageType('WiFiScanPayload', (_message.Message,), dict(
DESCRIPTOR = _WIFISCANPAYLOAD,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:WiFiScanPayload)
))
_sym_db.RegisterMessage(WiFiScanPayload)
# @@protoc_insertion_point(module_scope)

View File

@ -0,0 +1,199 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include <esp_err.h>
#include <esp_log.h>
#include <esp_wifi.h>
#include <esp_netif.h>
#include "wifi_provisioning/wifi_config.h"
#include "wifi_provisioning/wifi_scan.h"
#include "wifi_provisioning/manager.h"
#include "wifi_provisioning_priv.h"
static const char *TAG = "wifi_prov_handlers";
/* Provide definition of wifi_prov_ctx_t */
struct wifi_prov_ctx {
wifi_config_t wifi_cfg;
};
static wifi_config_t *get_config(wifi_prov_ctx_t **ctx)
{
return (*ctx ? & (*ctx)->wifi_cfg : NULL);
}
static wifi_config_t *new_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
(*ctx) = (wifi_prov_ctx_t *) calloc(1, sizeof(wifi_prov_ctx_t));
return get_config(ctx);
}
static void free_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
*ctx = NULL;
}
static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi_prov_ctx_t **ctx)
{
/* Initialize to zero */
memset(resp_data, 0, sizeof(wifi_prov_config_get_data_t));
if (wifi_prov_mgr_get_wifi_state(&resp_data->wifi_state) != ESP_OK) {
ESP_LOGW(TAG, "Wi-Fi provisioning manager not running");
return ESP_ERR_INVALID_STATE;
}
if (resp_data->wifi_state == WIFI_PROV_STA_CONNECTED) {
ESP_LOGD(TAG, "Got state : connected");
/* IP Addr assigned to STA */
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"), &ip_info);
esp_ip4addr_ntoa(&ip_info.ip, resp_data->conn_info.ip_addr, sizeof(resp_data->conn_info.ip_addr));
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
esp_wifi_sta_get_ap_info(&ap_info);
memcpy(resp_data->conn_info.bssid, (char *)ap_info.bssid, sizeof(ap_info.bssid));
memcpy(resp_data->conn_info.ssid, (char *)ap_info.ssid, sizeof(ap_info.ssid));
resp_data->conn_info.channel = ap_info.primary;
resp_data->conn_info.auth_mode = ap_info.authmode;
/* Tell manager to stop provisioning service */
wifi_prov_mgr_done();
} else if (resp_data->wifi_state == WIFI_PROV_STA_DISCONNECTED) {
ESP_LOGD(TAG, "Got state : disconnected");
/* If disconnected, convey reason */
wifi_prov_mgr_get_wifi_disconnect_reason(&resp_data->fail_reason);
} else {
ESP_LOGD(TAG, "Got state : connecting");
}
return ESP_OK;
}
static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data, wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (wifi_cfg) {
free_config(ctx);
}
wifi_cfg = new_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Unable to allocate Wi-Fi config");
return ESP_ERR_NO_MEM;
}
ESP_LOGD(TAG, "Wi-Fi Credentials Received");
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character) */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
/* Using strlcpy allows both max passphrase length (63 bytes) and ensures null termination
* because size of wifi_cfg->sta.password is 64 bytes (1 extra byte for null character) */
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}
static esp_err_t apply_config_handler(wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Wi-Fi config not set");
return ESP_ERR_INVALID_STATE;
}
esp_err_t ret = wifi_prov_mgr_configure_sta(wifi_cfg);
if (ret == ESP_OK) {
ESP_LOGD(TAG, "Wi-Fi Credentials Applied");
} else {
ESP_LOGE(TAG, "Failed to apply Wi-Fi Credentials");
}
free_config(ctx);
return ret;
}
esp_err_t get_wifi_prov_handlers(wifi_prov_config_handlers_t *ptr)
{
if (!ptr) {
return ESP_ERR_INVALID_ARG;
}
ptr->get_status_handler = get_status_handler;
ptr->set_config_handler = set_config_handler;
ptr->apply_config_handler = apply_config_handler;
ptr->ctx = NULL;
return ESP_OK;
}
/*************************************************************************/
static esp_err_t scan_start(bool blocking, bool passive,
uint8_t group_channels, uint32_t period_ms,
wifi_prov_scan_ctx_t **ctx)
{
return wifi_prov_mgr_wifi_scan_start(blocking, passive, group_channels, period_ms);
}
static esp_err_t scan_status(bool *scan_finished,
uint16_t *result_count,
wifi_prov_scan_ctx_t **ctx)
{
*scan_finished = wifi_prov_mgr_wifi_scan_finished();
*result_count = wifi_prov_mgr_wifi_scan_result_count();
return ESP_OK;
}
static esp_err_t scan_result(uint16_t result_index,
wifi_prov_scan_result_t *result,
wifi_prov_scan_ctx_t **ctx)
{
const wifi_ap_record_t *record = wifi_prov_mgr_wifi_scan_result(result_index);
if (!record) {
return ESP_FAIL;
}
/* Compile time check ensures memory safety in case SSID length in
* record / result structure definition changes in future */
_Static_assert(sizeof(result->ssid) == sizeof(record->ssid),
"source and destination should be of same size");
memcpy(result->ssid, record->ssid, sizeof(record->ssid));
memcpy(result->bssid, record->bssid, sizeof(record->bssid));
result->channel = record->primary;
result->rssi = record->rssi;
result->auth = record->authmode;
return ESP_OK;
}
esp_err_t get_wifi_scan_handlers(wifi_prov_scan_handlers_t *ptr)
{
if (!ptr) {
return ESP_ERR_INVALID_ARG;
}
ptr->scan_start = scan_start;
ptr->scan_status = scan_status;
ptr->scan_result = scan_result;
ptr->ctx = NULL;
return ESP_OK;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,232 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_bt.h>
#include <protocomm.h>
#include <protocomm_ble.h>
#include "wifi_provisioning/scheme_ble.h"
#include "wifi_provisioning_priv.h"
static const char *TAG = "wifi_prov_scheme_ble";
extern const wifi_prov_scheme_t wifi_prov_scheme_ble;
static uint8_t *custom_service_uuid;
static esp_err_t prov_start(protocomm_t *pc, void *config)
{
if (!pc) {
ESP_LOGE(TAG, "Protocomm handle cannot be null");
return ESP_ERR_INVALID_ARG;
}
if (!config) {
ESP_LOGE(TAG, "Cannot start with null configuration");
return ESP_ERR_INVALID_ARG;
}
protocomm_ble_config_t *ble_config = (protocomm_ble_config_t *) config;
/* Start protocomm as BLE service */
if (protocomm_ble_start(pc, ble_config) != ESP_OK) {
ESP_LOGE(TAG, "Failed to start protocomm BLE service");
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t wifi_prov_scheme_ble_set_service_uuid(uint8_t *uuid128)
{
if (!uuid128) {
return ESP_ERR_INVALID_ARG;
}
custom_service_uuid = uuid128;
return ESP_OK;
}
static void *new_config(void)
{
protocomm_ble_config_t *ble_config = calloc(1, sizeof(protocomm_ble_config_t));
if (!ble_config) {
ESP_LOGE(TAG, "Error allocating memory for new configuration");
return NULL;
}
/* The default provisioning service UUID */
const uint8_t service_uuid[16] = {
/* LSB <---------------------------------------
* ---------------------------------------> MSB */
0x07, 0xed, 0x9b, 0x2d, 0x0f, 0x06, 0x7c, 0x87,
0x9b, 0x43, 0x43, 0x6b, 0x4d, 0x24, 0x75, 0x17,
};
memcpy(ble_config->service_uuid, service_uuid, sizeof(ble_config->service_uuid));
return ble_config;
}
static void delete_config(void *config)
{
if (!config) {
ESP_LOGE(TAG, "Cannot delete null configuration");
return;
}
protocomm_ble_config_t *ble_config = (protocomm_ble_config_t *) config;
for (unsigned int i = 0; i < ble_config->nu_lookup_count; i++) {
free((void *)ble_config->nu_lookup[i].name);
}
free(ble_config->nu_lookup);
free(ble_config);
}
static esp_err_t set_config_service(void *config, const char *service_name, const char *service_key)
{
if (!config) {
ESP_LOGE(TAG, "Cannot set null configuration");
return ESP_ERR_INVALID_ARG;
}
if (!service_name) {
ESP_LOGE(TAG, "Service name cannot be NULL");
return ESP_ERR_INVALID_ARG;
}
protocomm_ble_config_t *ble_config = (protocomm_ble_config_t *) config;
strlcpy(ble_config->device_name, service_name, sizeof(ble_config->device_name));
/* If a custom service UUID has been provided, override the default one */
if (custom_service_uuid) {
memcpy(ble_config->service_uuid, custom_service_uuid, sizeof(ble_config->service_uuid));
}
return ESP_OK;
}
static esp_err_t set_config_endpoint(void *config, const char *endpoint_name, uint16_t uuid)
{
if (!config) {
ESP_LOGE(TAG, "Cannot set null configuration");
return ESP_ERR_INVALID_ARG;
}
if (!endpoint_name) {
ESP_LOGE(TAG, "EP name cannot be null");
return ESP_ERR_INVALID_ARG;
}
protocomm_ble_config_t *ble_config = (protocomm_ble_config_t *) config;
char *copy_ep_name = strdup(endpoint_name);
if (!copy_ep_name) {
ESP_LOGE(TAG, "Error allocating memory for EP name");
return ESP_ERR_NO_MEM;
}
protocomm_ble_name_uuid_t *lookup_table = (
realloc(ble_config->nu_lookup, (ble_config->nu_lookup_count + 1) * sizeof(protocomm_ble_name_uuid_t)));
if (!lookup_table) {
ESP_LOGE(TAG, "Error allocating memory for EP-UUID lookup table");
return ESP_ERR_NO_MEM;
}
lookup_table[ble_config->nu_lookup_count].name = copy_ep_name;
lookup_table[ble_config->nu_lookup_count].uuid = uuid;
ble_config->nu_lookup = lookup_table;
ble_config->nu_lookup_count += 1;
return ESP_OK;
}
/* Used when both BT and BLE are not needed by application */
void wifi_prov_scheme_ble_event_cb_free_btdm(void *user_data, wifi_prov_cb_event_t event, void *event_data)
{
esp_err_t err;
switch (event) {
case WIFI_PROV_INIT:
/* Release BT memory, as we need only BLE */
err = esp_bt_mem_release(ESP_BT_MODE_CLASSIC_BT);
if (err != ESP_OK) {
ESP_LOGE(TAG, "bt_mem_release of classic BT failed %d", err);
} else {
ESP_LOGI(TAG, "BT memory released");
}
break;
case WIFI_PROV_DEINIT:
/* Release memory used by BLE and Bluedroid host stack */
err = esp_bt_mem_release(ESP_BT_MODE_BTDM);
if (err != ESP_OK) {
ESP_LOGE(TAG, "bt_mem_release of BTDM failed %d", err);
} else {
ESP_LOGI(TAG, "BTDM memory released");
}
break;
default:
break;
}
}
/* Used when BT is not needed by application */
void wifi_prov_scheme_ble_event_cb_free_bt(void *user_data, wifi_prov_cb_event_t event, void *event_data)
{
esp_err_t err;
switch (event) {
case WIFI_PROV_INIT:
/* Release BT memory, as we need only BLE */
err = esp_bt_mem_release(ESP_BT_MODE_CLASSIC_BT);
if (err != ESP_OK) {
ESP_LOGE(TAG, "bt_mem_release of classic BT failed %d", err);
} else {
ESP_LOGI(TAG, "BT memory released");
}
break;
default:
break;
}
}
/* Used when BLE is not needed by application */
void wifi_prov_scheme_ble_event_cb_free_ble(void *user_data, wifi_prov_cb_event_t event, void *event_data)
{
esp_err_t err;
switch (event) {
case WIFI_PROV_DEINIT:
/* Release memory used by BLE stack */
err = esp_bt_mem_release(ESP_BT_MODE_BLE);
if (err != ESP_OK) {
ESP_LOGE(TAG, "bt_mem_release of BLE failed %d", err);
} else {
ESP_LOGI(TAG, "BLE memory released");
}
break;
default:
break;
}
}
const wifi_prov_scheme_t wifi_prov_scheme_ble = {
.prov_start = prov_start,
.prov_stop = protocomm_ble_stop,
.new_config = new_config,
.delete_config = delete_config,
.set_config_service = set_config_service,
.set_config_endpoint = set_config_endpoint,
.wifi_mode = WIFI_MODE_STA
};

View File

@ -0,0 +1,92 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include <protocomm.h>
#include <protocomm_console.h>
#include "wifi_provisioning/scheme_console.h"
#include "wifi_provisioning_priv.h"
static const char *TAG = "wifi_prov_scheme_console";
extern const wifi_prov_scheme_t wifi_prov_scheme_console;
static esp_err_t prov_start(protocomm_t *pc, void *config)
{
if (!pc) {
ESP_LOGE(TAG, "Protocomm handle cannot be null");
return ESP_ERR_INVALID_ARG;
}
if (!config) {
ESP_LOGE(TAG, "Cannot start with null configuration");
return ESP_ERR_INVALID_ARG;
}
protocomm_console_config_t *console_config = (protocomm_console_config_t *) config;
/* Start protocomm console */
esp_err_t err = protocomm_console_start(pc, console_config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to start protocomm HTTP server");
return ESP_FAIL;
}
return ESP_OK;
}
static void *new_config(void)
{
protocomm_console_config_t *console_config = malloc(sizeof(protocomm_console_config_t));
if (!console_config) {
ESP_LOGE(TAG, "Error allocating memory for new configuration");
return NULL;
}
protocomm_console_config_t default_config = PROTOCOMM_CONSOLE_DEFAULT_CONFIG();
memcpy(console_config, &default_config, sizeof(default_config));
return console_config;
}
static void delete_config(void *config)
{
if (!config) {
ESP_LOGE(TAG, "Cannot delete null configuration");
return;
}
free(config);
}
static esp_err_t set_config_service(void *config, const char *service_name, const char *service_key)
{
return ESP_OK;
}
static esp_err_t set_config_endpoint(void *config, const char *endpoint_name, uint16_t uuid)
{
return ESP_OK;
}
const wifi_prov_scheme_t wifi_prov_scheme_console = {
.prov_start = prov_start,
.prov_stop = protocomm_console_stop,
.new_config = new_config,
.delete_config = delete_config,
.set_config_service = set_config_service,
.set_config_endpoint = set_config_endpoint,
.wifi_mode = WIFI_MODE_STA
};

View File

@ -0,0 +1,207 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include <mdns.h>
#include <protocomm.h>
#include <protocomm_httpd.h>
#include "wifi_provisioning/scheme_softap.h"
#include "wifi_provisioning_priv.h"
typedef struct softap_config {
protocomm_httpd_config_t httpd_config;
char ssid[33];
char password[65];
} wifi_prov_softap_config_t;
static const char *TAG = "wifi_prov_scheme_softap";
extern const wifi_prov_scheme_t wifi_prov_scheme_softap;
static void *scheme_softap_prov_httpd_handle;
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Build Wi-Fi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
.max_connection = 5,
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strnlen(ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Run Wi-Fi in AP + STA mode with configuration built above */
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_APSTA);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Wi-Fi mode : %d", err);
return err;
}
err = esp_wifi_set_config(ESP_IF_WIFI_AP, &wifi_config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Wi-Fi config : %d", err);
return err;
}
return ESP_OK;
}
static esp_err_t prov_start(protocomm_t *pc, void *config)
{
if (!pc) {
ESP_LOGE(TAG, "Protocomm handle cannot be null");
return ESP_ERR_INVALID_ARG;
}
if (!config) {
ESP_LOGE(TAG, "Cannot start with null configuration");
return ESP_ERR_INVALID_ARG;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
protocomm_httpd_config_t *httpd_config = &softap_config->httpd_config;
if (scheme_softap_prov_httpd_handle) {
httpd_config->ext_handle_provided = true;
httpd_config->data.handle = scheme_softap_prov_httpd_handle;
}
/* Start protocomm server on top of HTTP */
esp_err_t err = protocomm_httpd_start(pc, httpd_config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to start protocomm HTTP server");
return err;
}
/* Start Wi-Fi softAP with specified ssid and password */
err = start_wifi_ap(softap_config->ssid, softap_config->password);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to start Wi-Fi AP");
protocomm_httpd_stop(pc);
return err;
}
/* Add mDNS service for allowing discovery of provisioning
* service on the SoftAP network (Optional). Even though
* this is an http service we identify it by _esp_wifi_prov so
* that application is free to use _http without conflict */
err = mdns_service_add("Wi-Fi Provisioning Service", "_esp_wifi_prov", "_tcp",
softap_config->httpd_config.data.config.port, NULL, 0);
if (err != ESP_OK) {
/* mDNS is not mandatory for provisioning to work,
* so print warning and return without failure */
ESP_LOGW(TAG, "Error adding mDNS service! Check if mDNS is running");
} else {
/* Information to identify the roles of the various
* protocomm endpoint URIs provided by the service */
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "version_endpoint", "/proto-ver");
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "session_endpoint", "/prov-session");
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "config_endpoint", "/prov-config");
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error adding mDNS service text item");
}
}
return ESP_OK;
}
static esp_err_t prov_stop(protocomm_t *pc)
{
esp_err_t err = protocomm_httpd_stop(pc);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Error occurred while stopping protocomm_httpd");
}
mdns_service_remove("_esp_wifi_prov", "_tcp");
return err;
}
static void *new_config(void)
{
wifi_prov_softap_config_t *softap_config = calloc(1, sizeof(wifi_prov_softap_config_t));
if (!softap_config) {
ESP_LOGE(TAG, "Error allocating memory for new configuration");
return NULL;
}
protocomm_httpd_config_t default_config = {
.data = {
.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}
};
softap_config->httpd_config = default_config;
return softap_config;
}
static void delete_config(void *config)
{
if (!config) {
ESP_LOGE(TAG, "Cannot delete null configuration");
return;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
free(softap_config);
}
static esp_err_t set_config_service(void *config, const char *service_name, const char *service_key)
{
if (!config) {
ESP_LOGE(TAG, "Cannot set null configuration");
return ESP_ERR_INVALID_ARG;
}
if (!service_name) {
ESP_LOGE(TAG, "Service name cannot be NULL");
return ESP_ERR_INVALID_ARG;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
strlcpy(softap_config->ssid, service_name, sizeof(softap_config->ssid));
if (service_key) {
strlcpy(softap_config->password, service_key, sizeof(softap_config->password));
}
return ESP_OK;
}
static esp_err_t set_config_endpoint(void *config, const char *endpoint_name, uint16_t uuid)
{
return ESP_OK;
}
void wifi_prov_scheme_softap_set_httpd_handle(void *handle)
{
scheme_softap_prov_httpd_handle = handle;
}
const wifi_prov_scheme_t wifi_prov_scheme_softap = {
.prov_start = prov_start,
.prov_stop = prov_stop,
.new_config = new_config,
.delete_config = delete_config,
.set_config_service = set_config_service,
.set_config_endpoint = set_config_endpoint,
.wifi_mode = WIFI_MODE_APSTA
};

View File

@ -151,6 +151,24 @@ static esp_err_t cmd_set_config_handler(WiFiConfigPayload *req,
wifi_prov_config_set_data_t req_data;
memset(&req_data, 0, sizeof(req_data));
/* Check arguments provided in protobuf packet:
* - SSID / Passphrase string length must be within the standard limits
* - BSSID must either be NULL or have length equal to that imposed by the standard
* If any of these conditions are not satisfied, don't invoke the handler and
* send error status without closing connection */
resp_payload->status = STATUS__InvalidArgument;
if (req->cmd_set_config->bssid.len != 0 &&
req->cmd_set_config->bssid.len != sizeof(req_data.bssid)) {
ESP_LOGD(TAG, "Received invalid BSSID");
} else if (req->cmd_set_config->ssid.len >= sizeof(req_data.ssid)) {
ESP_LOGD(TAG, "Received invalid SSID");
} else if (req->cmd_set_config->passphrase.len >= sizeof(req_data.password)) {
ESP_LOGD(TAG, "Received invalid Passphrase");
} else {
/* The received SSID and Passphrase are not NULL terminated so
* we memcpy over zeroed out arrays. Above length checks ensure
* that there is atleast 1 extra byte for null termination */
memcpy(req_data.ssid, req->cmd_set_config->ssid.data,
req->cmd_set_config->ssid.len);
memcpy(req_data.password, req->cmd_set_config->passphrase.data,
@ -160,6 +178,9 @@ static esp_err_t cmd_set_config_handler(WiFiConfigPayload *req,
req_data.channel = req->cmd_set_config->channel;
if (h->set_config_handler(&req_data, &h->ctx) == ESP_OK) {
resp_payload->status = STATUS__Success;
} else {
resp_payload->status = STATUS__InternalError;
}
}
resp->payload_case = WI_FI_CONFIG_PAYLOAD__PAYLOAD_RESP_SET_CONFIG;
@ -188,7 +209,7 @@ static esp_err_t cmd_apply_config_handler(WiFiConfigPayload *req,
if (h->apply_config_handler(&h->ctx) == ESP_OK) {
resp_payload->status = STATUS__Success;
} else {
resp_payload->status = STATUS__InvalidArgument;
resp_payload->status = STATUS__InternalError;
}
resp->payload_case = WI_FI_CONFIG_PAYLOAD__PAYLOAD_RESP_APPLY_CONFIG;

View File

@ -0,0 +1,102 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_security.h>
#include "wifi_provisioning/manager.h"
#include "wifi_provisioning/wifi_config.h"
#include "wifi_provisioning/wifi_scan.h"
/**
* @brief Notify manager that provisioning is done
*
* Stops the provisioning. This is called by the get_status_handler()
* when the status is connected. This has no effect if main application
* has disabled auto stop on completion by calling
* wifi_prov_mgr_disable_auto_stop()
*
* @return
* - ESP_OK : Provisioning will be stopped
* - ESP_FAIL : Failed to stop provisioning
*/
esp_err_t wifi_prov_mgr_done(void);
/**
* @brief Start Wi-Fi AP Scan
*
* @param[in] blocking Set true to return only after scanning is complete
* @param[in] passive Set true to perform passive scan instead of default active scan
* @param[in] group_channels Number of channels to scan in one go
* (set to 0 for scanning all channels in one go)
* @param[in] period_ms Scan time (in milli-seconds) on each channel
*
* @return
* - ESP_OK : Successfully started Wi-Fi scanning
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_wifi_scan_start(bool blocking, bool passive,
uint8_t group_channels,
uint32_t period_ms);
/**
* @brief Use to query the state of Wi-Fi scan
*
* @return
* - true : Scan finished
* - false : Scan running
*/
bool wifi_prov_mgr_wifi_scan_finished(void);
/**
* @brief Get the count of results in the scan list
*
* @return
* - count : Number of Wi-Fi Access Points detected while scanning
*/
uint16_t wifi_prov_mgr_wifi_scan_result_count(void);
/**
* @brief Get AP record for a particular index in the scan list result
*
* @param[out] index Index of the result to fetch
*
* @return
* - result : Pointer to Access Point record
*/
const wifi_ap_record_t *wifi_prov_mgr_wifi_scan_result(uint16_t index);
/**
* @brief Get protocomm handlers for wifi_config provisioning endpoint
*
* @param[out] ptr pointer to structure to be set
*
* @return
* - ESP_OK : success
* - ESP_ERR_INVALID_ARG : null argument
*/
esp_err_t get_wifi_prov_handlers(wifi_prov_config_handlers_t *ptr);
/**
* @brief Get protocomm handlers for wifi_scan provisioning endpoint
*
* @param[out] ptr pointer to structure to be set
*
* @return
* - ESP_OK : success
* - ESP_ERR_INVALID_ARG : null argument
*/
esp_err_t get_wifi_scan_handlers(wifi_prov_scan_handlers_t *ptr);

View File

@ -0,0 +1,297 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <esp_log.h>
#include <string.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include "wifi_scan.pb-c.h"
#include <wifi_provisioning/wifi_scan.h>
static const char *TAG = "proto_wifi_scan";
typedef struct wifi_prov_scan_cmd {
int cmd_num;
esp_err_t (*command_handler)(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data);
} wifi_prov_scan_cmd_t;
static esp_err_t cmd_scan_start_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static esp_err_t cmd_scan_status_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static esp_err_t cmd_scan_result_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static wifi_prov_scan_cmd_t cmd_table[] = {
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart,
.command_handler = cmd_scan_start_handler
},
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus,
.command_handler = cmd_scan_status_handler
},
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult,
.command_handler = cmd_scan_result_handler
}
};
static esp_err_t cmd_scan_start_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanStart *resp_payload = (RespScanStart *) malloc(sizeof(RespScanStart));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_start__init(resp_payload);
resp->status = (h->scan_start(req->cmd_scan_start->blocking,
req->cmd_scan_start->passive,
req->cmd_scan_start->group_channels,
req->cmd_scan_start->period_ms,
&h->ctx) == ESP_OK ?
STATUS__Success : STATUS__InternalError);
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_START;
resp->resp_scan_start = resp_payload;
return ESP_OK;
}
static esp_err_t cmd_scan_status_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
bool scan_finished = false;
uint16_t result_count = 0;
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanStatus *resp_payload = (RespScanStatus *) malloc(sizeof(RespScanStatus));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_status__init(resp_payload);
resp->status = (h->scan_status(&scan_finished, &result_count, &h->ctx) == ESP_OK ?
STATUS__Success : STATUS__InternalError);
resp_payload->scan_finished = scan_finished;
resp_payload->result_count = result_count;
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_STATUS;
resp->resp_scan_status = resp_payload;
return ESP_OK;
}
static esp_err_t cmd_scan_result_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
esp_err_t err;
wifi_prov_scan_result_t scan_result = {{0}, {0}, 0, 0, 0};
WiFiScanResult **results = NULL;
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanResult *resp_payload = (RespScanResult *) malloc(sizeof(RespScanResult));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_result__init(resp_payload);
resp->status = STATUS__Success;
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_RESULT;
resp->resp_scan_result = resp_payload;
results = (WiFiScanResult **) calloc(req->cmd_scan_result->count,
sizeof(WiFiScanResult *));
if (!results) {
ESP_LOGE(TAG, "Failed to allocate memory for results array");
return ESP_ERR_NO_MEM;
}
resp_payload->entries = results;
resp_payload->n_entries = req->cmd_scan_result->count;
for (uint16_t i = 0; i < req->cmd_scan_result->count; i++) {
err = h->scan_result(i + req->cmd_scan_result->start_index,
&scan_result, &h->ctx);
if (err != ESP_OK) {
resp->status = STATUS__InternalError;
break;
}
results[i] = (WiFiScanResult *) malloc(sizeof(WiFiScanResult));
if (!results[i]) {
ESP_LOGE(TAG, "Failed to allocate memory for result entry");
return ESP_ERR_NO_MEM;
}
wi_fi_scan_result__init(results[i]);
results[i]->ssid.len = strnlen(scan_result.ssid, 32);
results[i]->ssid.data = (uint8_t *) strndup(scan_result.ssid, 32);
if (!results[i]->ssid.data) {
ESP_LOGE(TAG, "Failed to allocate memory for scan result entry SSID");
return ESP_ERR_NO_MEM;
}
results[i]->channel = scan_result.channel;
results[i]->rssi = scan_result.rssi;
results[i]->auth = scan_result.auth;
results[i]->bssid.len = sizeof(scan_result.bssid);
results[i]->bssid.data = malloc(results[i]->bssid.len);
if (!results[i]->bssid.data) {
ESP_LOGE(TAG, "Failed to allocate memory for scan result entry BSSID");
return ESP_ERR_NO_MEM;
}
memcpy(results[i]->bssid.data, scan_result.bssid, results[i]->bssid.len);
}
return ESP_OK;
}
static int lookup_cmd_handler(int cmd_id)
{
int i;
for (i = 0; i < sizeof(cmd_table)/sizeof(wifi_prov_scan_cmd_t); i++) {
if (cmd_table[i].cmd_num == cmd_id) {
return i;
}
}
return -1;
}
static void wifi_prov_scan_cmd_cleanup(WiFiScanPayload *resp, void *priv_data)
{
switch (resp->msg) {
case WI_FI_SCAN_MSG_TYPE__TypeRespScanStart:
{
free(resp->resp_scan_start);
}
break;
case WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus:
{
free(resp->resp_scan_status);
}
break;
case WI_FI_SCAN_MSG_TYPE__TypeRespScanResult:
{
if (!resp->resp_scan_result) return;
if (resp->resp_scan_result->entries) {
for (uint16_t i = 0; i < resp->resp_scan_result->n_entries; i++) {
if (!resp->resp_scan_result->entries[i]) continue;
free(resp->resp_scan_result->entries[i]->ssid.data);
free(resp->resp_scan_result->entries[i]->bssid.data);
free(resp->resp_scan_result->entries[i]);
}
free(resp->resp_scan_result->entries);
}
free(resp->resp_scan_result);
}
break;
default:
ESP_LOGE(TAG, "Unsupported response type in cleanup_handler");
break;
}
return;
}
static esp_err_t wifi_prov_scan_cmd_dispatcher(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
esp_err_t ret;
ESP_LOGD(TAG, "In wifi_prov_scan_cmd_dispatcher Cmd=%d", req->msg);
int cmd_index = lookup_cmd_handler(req->msg);
if (cmd_index < 0) {
ESP_LOGE(TAG, "Invalid command handler lookup");
return ESP_FAIL;
}
ret = cmd_table[cmd_index].command_handler(req, resp, priv_data);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Error executing command handler");
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t wifi_prov_scan_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data)
{
WiFiScanPayload *req;
WiFiScanPayload resp;
esp_err_t ret = ESP_OK;
req = wi_fi_scan_payload__unpack(NULL, inlen, inbuf);
if (!req) {
ESP_LOGE(TAG, "Unable to unpack scan message");
return ESP_ERR_INVALID_ARG;
}
wi_fi_scan_payload__init(&resp);
ret = wifi_prov_scan_cmd_dispatcher(req, &resp, priv_data);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Command dispatcher error %d", ret);
ret = ESP_FAIL;
goto exit;
}
resp.msg = req->msg + 1; /* Response is request + 1 */
*outlen = wi_fi_scan_payload__get_packed_size(&resp);
if (*outlen <= 0) {
ESP_LOGE(TAG, "Invalid encoding for response");
ret = ESP_FAIL;
goto exit;
}
*outbuf = (uint8_t *) malloc(*outlen);
if (!*outbuf) {
ESP_LOGE(TAG, "System out of memory");
ret = ESP_ERR_NO_MEM;
goto exit;
}
wi_fi_scan_payload__pack(&resp, *outbuf);
ESP_LOGD(TAG, "Response packet size : %d", *outlen);
exit:
wi_fi_scan_payload__free_unpacked(req, NULL);
wifi_prov_scan_cmd_cleanup(&resp, priv_data);
return ret;
}

View File

@ -1,6 +1,25 @@
# Provisioning Application Examples
These consist of the following examples :
This primarily consists of a single unified example wifi_prov_mgr
* wifi_prov_mgr
Abstracts out most of the complexity of Wi-Fi provisioning and allows easy switching between the SoftAP (using HTTP) and BLE transports. It also demonstrates how applications can register and use additional custom data endpoints.
Provisioning applications are available for various platforms:
* Android:
- [BLE Provisioning app on Play Store](https://play.google.com/store/apps/details?id=com.espressif.provble).
- [SoftAP Provisioning app on Play Store](https://play.google.com/store/apps/details?id=com.espressif.provsoftap).
- Source code on GitHub: [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android).
* iOS:
- [BLE Provisioning app on app store](https://apps.apple.com/in/app/esp-ble-provisioning/id1473590141)
- [SoftAP Provisioning app on app Store](https://apps.apple.com/in/app/esp-softap-provisioning/id1474040630)
- Source code on GitHub: [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
* For all other platforms a python based command line tool is provided under "$IDF_PATH/tools/esp_prov"
## Legacy Examples
The legacy examples require own implementation of provisioning functions and handlers. The Wi-Fi provisioning component abstracts out most of this complexity and provides a simpler interface and so, that is recommended for use. However, if you want to use lower level provisioning and protocomm APIs, you can check the these examples under legacy/ folder:
* softap_prov
Provisioning involves Wi-Fi station configuration via an HTTP server running on the device, which is initially configured to be in SoftAP mode. After provisioning, device runs in Wi-Fi station mode only and connects to the AP whose credentials were provided during provisioning.
@ -14,10 +33,4 @@ These consist of the following examples :
* custom_config
Similar to softap_prov examples, but allows for configuration of custom (device-local) information during provisioning. This is intended as an example for implementing custom provisioning schemes.
Provisioning applications are available for various platforms:
* For Android, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android)
* For iOS, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
* For all other platforms a python based command line tool is provided under "$IDF_PATH/tools/esp_prov"
Refer to the README.md files in each example directory for more information.

View File

@ -1,8 +0,0 @@
set(COMPONENT_ADD_INCLUDEDIRS include)
set(COMPONENT_PRIV_INCLUDEDIRS proto-c)
set(COMPONENT_SRCS "src/custom_config.c"
"proto-c/custom_config.pb-c.c")
set(COMPONENT_PRIV_REQUIRES protobuf-c)
register_component()

View File

@ -1,11 +0,0 @@
# Protobuf files for defining custom config-data packet structures
This is an example proto file defining custom configuration related data packet structures, namely -
1. CustomConfigRequest - for sending configuration data consisting of various fields (Info and Version)
2. CustomConfigResponse - for receiving configuration status (fail/success)
Note : These proto files are not automatically compiled during the build process.
Run "make" (Optional) to generate the respective C and Python files. The generated C files are used by protocomm itself to create, delete and manipulate transaction packets. The generated Python files can be used by python based applications for implementing client side interface to protocomm layer.
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under "protocomm/proto-c" and "protocomm/python" directories, and thus running make (and installing the Protobuf compilers) is optional.

View File

@ -1,6 +0,0 @@
set(COMPONENT_SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c")
set(COMPONENT_ADD_INCLUDEDIRS ".")
register_component()

View File

@ -1,58 +0,0 @@
menu "Example Configuration"
config SOFTAP_SSID
string "WiFi SSID"
default "myssid"
help
SSID (network name) for the example to connect to.
config SOFTAP_PASS
string "WiFi Password"
default "mypassword"
help
WiFi password (WPA or WPA2) for the example to use.
config USE_SEC_1
bool
default n
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config USE_POP
bool
depends on USE_SEC_1
default n
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config POP
string "Proof-of-possession"
default "abcd1234"
depends on USE_POP
config PROTOCOMM_HTTPD_PORT
int "Protocomm HTTP Port"
default 80
help
Port on which to run Protocomm HTTP based provisioning service
config RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the WiFi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -1,3 +0,0 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y
CONFIG_LWIP_NETIF_LOOPBACK=y
CONFIG_LWIP_LOOPBACK_MAX_PBUFS=1

View File

@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(ble_prov)

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := ble_prov
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,208 @@
| Supported Targets | ESP32 |
| ----------------- | ----- |
# BLE based Provisioning Example (Legacy)
> Note: It is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs. Check this example only if you wish to use lower level provisioning and protocomm APIs and want more control over the handlers.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
`ble_prov` example demonstrates the implementation and integration of various IDF components for building a provisioning application.
For this example BLE is chosen as the mode of transport, over which the provisioning related communication is to take place, between the device (to be provisioned) and the client (owner of the device).
In the provisioning process the device is configured as a Wi-Fi station with specified credentials. Once configured, the device will retain the Wi-Fi configuration, until a flash erase is performed.
Right after provisioning is complete, BLE is turned off and disabled to free the memory used by the BLE stack. Though, that is specific to this example, and the user can choose to keep BLE on in their own application.
`ble_prov` uses the following components :
* `wifi_provisioning` : provides data structures and protocomm endpoint handlers for Wi-Fi configuration
* `protocomm` : for protocol based communication and secure session establishment
* `protobuf` : Google's protocol buffer library for serialization of protocomm data structures
* `bt` : ESP32 BLE stack for transport of protobuf packets
This example can be used, as it is, for adding a provisioning service to any application intended for IoT.
## How to use example
### Hardware Required
Example should be able to run on any commonly available ESP32 development board.
### Application Required
Provisioning applications are available for various platforms. See below
#### Platform : Android
For Android, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android)
#### Platform : iOS
For iOS, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
#### Platform : Linux / Windows / macOS
To provision the device running this example, the `esp_prov.py` script needs to be run (found under `$IDF_PATH/tools/esp_prov`). Make sure to satisfy all the dependencies prior to running the script.
Presently, `esp_prov` supports BLE transport only for Linux platform. For Windows/macOS it falls back to console mode and requires another application (for BLE) through which the communication can take place.
There are various applications, specific to Windows and macOS platform which can be used. The `esp_prov` console will guide you through the provisioning process of locating the correct BLE GATT services and characteristics, the values to write, and input read values.
### Configure the project
```
idf.py menuconfig
```
* Under Example Configuration set the following :
* Security Version (default 1)
* Proof of Possession (default "abcd1234")
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
```
I (550) app: Starting BLE provisioning
I (1130) app_prov: Provisioning started with BLE devname : PROV_261FCC
```
Make sure to note down the BLE device name (starting with PROV_) displayed in the serial monitor log (eg. PROV_261FCC). This will depend on the MAC ID and will be unique for every device.
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace `myssid` and `mypassword` with the credentials of the AP to which the device is supposed to connect to after provisioning). Assuming default example configuration :
```
python esp_prov.py --transport ble --service_name PROV_261FCC --sec_ver 1 --pop abcd1234 --ssid myssid --passphrase mypassword
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
```
I (682950) app_prov_handler: WiFi Credentials Received :
ssid : myssid
password : mypassword
.
.
.
I (683130) app_prov: STA Start
I (683130) app_prov_handler: WiFi Credentials Applied
.
.
.
I (688270) app_prov_handler: Connecting state
.
.
.
I (688390) app_prov: STA Got IP
I (688390) app: got ip:192.168.43.220
I (693410) app_prov_handler: Connected state
```
After sometime the provisioning app will exit and BLE will be turned off
```
I (718390) app_prov: Stopping provisioning
I (718670) app_prov: Provisioning stopped
```
## Troubleshooting
### Provisioning failed
It is possible that the Wi-Fi credentials provided were incorrect, or the device was not able to establish connection to the network, in which the the `esp_prov` script will notify failure (with reason) and the provisioning app will continue running, allowing the user to retry the process. Serial monitor log will display the failure along with disconnect reason :
```
E (39291) app_prov: STA Disconnected
E (39291) app_prov: Disconnect reason : 201
I (39291) app_prov: STA AP Not found
I (42021) app_prov_handler: Disconnected state
```
### Provisioning does not start
If the serial monitor log is different, as shown below :
```
I (539) app_prov: Found ssid myssid
I (539) app_prov: Found password mypassword
I (549) app: Starting WiFi station
```
It means the Wi-Fi credentials were already set by some other application flashed previously to your device. To erase these credentials either do full erase and then flash the example
```
make erase_flash
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.
### Unsupported platform
If the platform requirement, for running `esp_prov` is not satisfied, then the script execution will fallback to console mode, in which case the full process (involving user inputs) will look like this :
```
BLE client is running in console mode
This could be due to your platform not being supported or dependencies not being met
Please ensure all pre-requisites are met to run the full fledged client
BLECLI >> Please connect to BLE device `PROV_261FCC` manually using your tool of choice
BLECLI >> Was the device connected successfully? [y/n] y
BLECLI >> List available attributes of the connected device
BLECLI >> Is the service UUID '0000ffff-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff53-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff51-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff52-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
==== Verifying protocol version ====
BLECLI >> Write following data to characteristic with UUID '0000ff53-0000-1000-8000-00805f9b34fb' :
>> 56302e31
BLECLI >> Enter data read from characteristic (in hex) :
<< 53554343455353
==== Verified protocol version successfully ====
==== Starting Session ====
BLECLI >> Write following data to characteristic with UUID '0000ff51-0000-1000-8000-00805f9b34fb' :
>> 10015a25a201220a20ae6d9d5d1029f8c366892252d2d5a0ffa7ce1ee5829312545dd5f2aba057294d
BLECLI >> Enter data read from characteristic (in hex) :
<< 10015a390801aa0134122048008bfc365fad4753dc75912e0c764d60749cb26dd609595b6fbc72e12614031a1089733af233c7448e7d7fb7963682c6d8
BLECLI >> Write following data to characteristic with UUID '0000ff51-0000-1000-8000-00805f9b34fb' :
>> 10015a270802b2012212204051088dc294fe4621fac934a8ea22e948fcc3e8ac458aac088ce705c65dbfb9
BLECLI >> Enter data read from characteristic (in hex) :
<< 10015a270803ba01221a20c8d38059d5206a3d92642973ac6ba8ac2f6ecf2b7a3632964eb35a0f20133adb
==== Session Established ====
==== Sending Wifi credential to esp32 ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 98471ac4019a46765c28d87df8c8ae71c1ae6cfe0bc9c615bc6d2c
BLECLI >> Enter data read from characteristic (in hex) :
<< 3271f39a
==== Wifi Credentials sent successfully ====
==== Applying config to esp32 ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 5355
BLECLI >> Enter data read from characteristic (in hex) :
<< 1664db24
==== Apply config sent successfully ====
==== Wifi connection state ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 290d
BLECLI >> Enter data read from characteristic (in hex) :
<< 505f72a9f8521025c1964d7789c4d7edc56aedebd144e1b667bc7c0975757b80cc091aa9f3e95b06eaefbc30290fa1
++++ WiFi state: connected ++++
==== Provisioning was successful ====
```
The write data is to be copied from the console output ```>>``` to the platform specific application and the data read from the application is to be pasted at the user input prompt ```<<``` of the console, in the format (hex) indicated in above sample log.

View File

@ -0,0 +1,102 @@
#!/usr/bin/env python
#
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import re
import os
import time
import ttfw_idf
import esp_prov
# Have esp_prov throw exception
esp_prov.config_throw_except = True
@ttfw_idf.idf_example_test(env_tag="Example_WIFI_BT")
def test_examples_provisioning_ble(env, extra_data):
# Acquire DUT
dut1 = env.get_dut("ble_prov", "examples/provisioning/legacy/ble_prov", dut_class=ttfw_idf.ESP32DUT)
# Get binary file
binary_file = os.path.join(dut1.app.binary_path, "ble_prov.bin")
bin_size = os.path.getsize(binary_file)
ttfw_idf.log_performance("ble_prov_bin_size", "{}KB".format(bin_size // 1024))
ttfw_idf.check_performance("ble_prov_bin_size", bin_size // 1024, dut1.TARGET)
# Upload binary and start testing
dut1.start_app()
# Parse BLE devname
devname = dut1.expect(re.compile(r"Provisioning started with BLE devname : '(PROV_\S\S\S\S\S\S)'"), timeout=60)[0]
print("BLE Device Alias for DUT :", devname)
# Match additional headers sent in the request
dut1.expect("BLE Provisioning started", timeout=30)
print("Starting Provisioning")
verbose = False
protover = "V0.1"
secver = 1
pop = "abcd1234"
provmode = "ble"
ap_ssid = "myssid"
ap_password = "mypassword"
print("Getting security")
security = esp_prov.get_security(secver, pop, verbose)
if security is None:
raise RuntimeError("Failed to get security")
print("Getting transport")
transport = esp_prov.get_transport(provmode, devname)
if transport is None:
raise RuntimeError("Failed to get transport")
print("Verifying protocol version")
if not esp_prov.version_match(transport, protover):
raise RuntimeError("Mismatch in protocol version")
print("Starting Session")
if not esp_prov.establish_session(transport, security):
raise RuntimeError("Failed to start session")
print("Sending Wifi credential to DUT")
if not esp_prov.send_wifi_config(transport, security, ap_ssid, ap_password):
raise RuntimeError("Failed to send Wi-Fi config")
print("Applying config")
if not esp_prov.apply_wifi_config(transport, security):
raise RuntimeError("Failed to send apply config")
success = False
while True:
time.sleep(5)
print("Wi-Fi connection state")
ret = esp_prov.get_wifi_config(transport, security)
if (ret == 1):
continue
elif (ret == 0):
print("Provisioning was successful")
success = True
break
if not success:
raise RuntimeError("Provisioning failed")
if __name__ == '__main__':
test_examples_provisioning_ble()

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,40 @@
menu "Example Configuration"
config EXAMPLE_USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -0,0 +1,145 @@
/* BLE based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
#include <lwip/err.h>
#include <lwip/sys.h>
#include "app_prov.h"
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void start_ble_provisioning(void);
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
static int s_retry_num_ap_not_found = 0;
static int s_retry_num_ap_auth_fail = 0;
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
case WIFI_REASON_AUTH_FAIL:
case WIFI_REASON_ASSOC_FAIL:
case WIFI_REASON_HANDSHAKE_TIMEOUT:
ESP_LOGW(TAG, "connect to the AP fail : auth Error");
if (s_retry_num_ap_auth_fail < EXAMPLE_AP_RECONN_ATTEMPTS) {
s_retry_num_ap_auth_fail++;
esp_wifi_connect();
ESP_LOGI(TAG, "retry connecting to the AP...");
} else {
/* Restart provisioning if authentication fails */
start_ble_provisioning();
}
break;
case WIFI_REASON_NO_AP_FOUND:
ESP_LOGW(TAG, "connect to the AP fail : not found");
if (s_retry_num_ap_not_found < EXAMPLE_AP_RECONN_ATTEMPTS) {
s_retry_num_ap_not_found++;
esp_wifi_connect();
ESP_LOGI(TAG, "retry to connecting to the AP...");
}
break;
default:
/* None of the expected reasons */
esp_wifi_connect();
break;
}
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num_ap_not_found = 0;
s_retry_num_ap_auth_fail = 0;
}
}
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
static void start_ble_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
ESP_ERROR_CHECK(app_prov_start_ble_provisioning(security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via BLE */
ESP_LOGI(TAG, "Starting BLE provisioning");
start_ble_provisioning();
} else {
/* Else start as station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta();
}
}

View File

@ -0,0 +1,387 @@
/* BLE based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_bt.h>
#include <esp_event.h>
#ifdef CONFIG_BT_NIMBLE_ENABLED
#include "esp_nimble_hci.h"
#include "nimble/nimble_port.h"
#include "nimble/nimble_port_freertos.h"
#include "host/ble_hs.h"
#endif
#include <protocomm.h>
#include <protocomm_ble.h>
#include <protocomm_security0.h>
#include <protocomm_security1.h>
#include <wifi_provisioning/wifi_config.h>
#include "app_prov.h"
static const char *TAG = "app_prov";
static const char *ssid_prefix = "PROV_";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for wifi_config provisioning endpoint */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
/**
* @brief Data relevant to provisioning application
*/
struct app_prov_data {
protocomm_t *pc; /*!< Protocomm handler */
int security; /*!< Type of security to use with protocomm */
const protocomm_security_pop_t *pop; /*!< Pointer to proof of possession */
esp_timer_handle_t timer; /*!< Handle to timer */
/* State of WiFi Station */
wifi_prov_sta_state_t wifi_state;
/* Code for WiFi station disconnection (if disconnected) */
wifi_prov_sta_fail_reason_t wifi_disconnect_reason;
};
/* Pointer to provisioning application data */
static struct app_prov_data *g_prov;
static esp_err_t app_prov_start_service(void)
{
/* Create new protocomm instance */
g_prov->pc = protocomm_new();
if (g_prov->pc == NULL) {
ESP_LOGE(TAG, "Failed to create new protocomm instance");
return ESP_FAIL;
}
/* Endpoint UUIDs */
protocomm_ble_name_uuid_t nu_lookup_table[] = {
{"prov-session", 0x0001},
{"prov-config", 0x0002},
{"proto-ver", 0x0003},
};
/* Config for protocomm_ble_start() */
protocomm_ble_config_t config = {
.service_uuid = {
/* LSB <---------------------------------------
* ---------------------------------------> MSB */
0xb4, 0xdf, 0x5a, 0x1c, 0x3f, 0x6b, 0xf4, 0xbf,
0xea, 0x4a, 0x82, 0x03, 0x04, 0x90, 0x1a, 0x02,
},
.nu_lookup_count = sizeof(nu_lookup_table)/sizeof(nu_lookup_table[0]),
.nu_lookup = nu_lookup_table
};
/* With the above selection of 128bit primary service UUID and
* 16bit endpoint UUIDs, the 128bit characteristic UUIDs will be
* formed by replacing the 12th and 13th bytes of the service UUID
* with the 16bit endpoint UUID, i.e. :
* service UUID : 021a9004-0382-4aea-bff4-6b3f1c5adfb4
* masked base : 021a____-0382-4aea-bff4-6b3f1c5adfb4
* ------------------------------------------------------
* resulting characteristic UUIDs :
* 1) prov-session : 021a0001-0382-4aea-bff4-6b3f1c5adfb4
* 2) prov-config : 021a0002-0382-4aea-bff4-6b3f1c5adfb4
* 3) proto-ver : 021a0003-0382-4aea-bff4-6b3f1c5adfb4
*
* Also, note that each endpoint (characteristic) will have
* an associated "Characteristic User Description" descriptor
* with 16bit UUID 0x2901, each containing the corresponding
* endpoint name. These descriptors can be used by a client
* side application to figure out which characteristic is
* mapped to which endpoint, without having to hardcode the
* UUIDs */
uint8_t eth_mac[6];
esp_wifi_get_mac(WIFI_IF_STA, eth_mac);
snprintf(config.device_name, sizeof(config.device_name), "%s%02X%02X%02X",
ssid_prefix, eth_mac[3], eth_mac[4], eth_mac[5]);
/* Release BT memory, as we need only BLE */
esp_err_t err = esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT);
if (err) {
ESP_LOGE(TAG, "bt_controller_mem_release failed %d", err);
if (err != ESP_ERR_INVALID_STATE) {
return err;
}
}
/* Start protocomm layer on top of BLE */
if (protocomm_ble_start(g_prov->pc, &config) != ESP_OK) {
ESP_LOGE(TAG, "Failed to start BLE provisioning");
return ESP_FAIL;
}
/* Set protocomm version verification endpoint for protocol */
protocomm_set_version(g_prov->pc, "proto-ver", "V0.1");
/* Set protocomm security type for endpoint */
if (g_prov->security == 0) {
protocomm_set_security(g_prov->pc, "prov-session", &protocomm_security0, NULL);
} else if (g_prov->security == 1) {
protocomm_set_security(g_prov->pc, "prov-session", &protocomm_security1, g_prov->pop);
}
/* Add endpoint for provisioning to set wifi station config */
if (protocomm_add_endpoint(g_prov->pc, "prov-config",
wifi_prov_config_data_handler,
(void *) &wifi_prov_handlers) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set provisioning endpoint");
protocomm_ble_stop(g_prov->pc);
return ESP_FAIL;
}
ESP_LOGI(TAG, "Provisioning started with BLE devname : '%s'", config.device_name);
return ESP_OK;
}
static void app_prov_stop_service(void)
{
/* Remove provisioning endpoint */
protocomm_remove_endpoint(g_prov->pc, "prov-config");
/* Unset provisioning security */
protocomm_unset_security(g_prov->pc, "prov-session");
/* Unset provisioning version endpoint */
protocomm_unset_version(g_prov->pc, "proto-ver");
/* Stop protocomm ble service */
protocomm_ble_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
/* Release memory used by BT stack */
esp_bt_mem_release(ESP_BT_MODE_BTDM);
}
/* Task spawned by timer callback */
static void stop_prov_task(void * arg)
{
ESP_LOGI(TAG, "Stopping provisioning");
app_prov_stop_service();
/* Timer not needed anymore */
esp_timer_handle_t timer = g_prov->timer;
esp_timer_delete(timer);
g_prov->timer = NULL;
/* Free provisioning process data */
free(g_prov);
g_prov = NULL;
ESP_LOGI(TAG, "Provisioning stopped");
vTaskDelete(NULL);
}
/* Callback to be invoked by timer */
static void _stop_prov_cb(void * arg)
{
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* If pointer to provisioning application data is NULL
* then provisioning is not running */
if (!g_prov) {
return;
}
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTED;
if (g_prov && g_prov->timer) {
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
case WIFI_REASON_AUTH_FAIL:
case WIFI_REASON_ASSOC_FAIL:
case WIFI_REASON_HANDSHAKE_TIMEOUT:
ESP_LOGI(TAG, "STA Auth Error");
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AUTH_ERROR;
break;
case WIFI_REASON_NO_AP_FOUND:
ESP_LOGI(TAG, "STA AP Not found");
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AP_NOT_FOUND;
break;
default:
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
esp_wifi_connect();
}
}
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
{
if (g_prov == NULL || state == NULL) {
return ESP_FAIL;
}
*state = g_prov->wifi_state;
return ESP_OK;
}
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason)
{
if (g_prov == NULL || reason == NULL) {
return ESP_FAIL;
}
if (g_prov->wifi_state != WIFI_PROV_STA_DISCONNECTED) {
return ESP_FAIL;
}
*reason = g_prov->wifi_disconnect_reason;
return ESP_OK;
}
esp_err_t app_prov_is_provisioned(bool *provisioned)
{
*provisioned = false;
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
return ESP_FAIL;
}
if (strlen((const char*) wifi_cfg.sta.ssid)) {
*provisioned = true;
ESP_LOGI(TAG, "Found ssid %s", (const char*) wifi_cfg.sta.ssid);
ESP_LOGI(TAG, "Found password %s", (const char*) wifi_cfg.sta.password);
}
return ESP_OK;
}
esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
{
/* Configure WiFi as station */
if (esp_wifi_set_mode(WIFI_MODE_STA) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode");
return ESP_FAIL;
}
/* Configure WiFi station with host credentials
* provided during provisioning */
if (esp_wifi_set_config(ESP_IF_WIFI_STA, wifi_cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi configuration");
return ESP_FAIL;
}
/* Start WiFi */
if (esp_wifi_start() != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi configuration");
return ESP_FAIL;
}
/* Connect to AP */
if (esp_wifi_connect() != ESP_OK) {
ESP_LOGE(TAG, "Failed to connect WiFi");
return ESP_FAIL;
}
if (g_prov) {
/* Reset wifi station state for provisioning app */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
}
return ESP_OK;
}
esp_err_t app_prov_start_ble_provisioning(int security, const protocomm_security_pop_t *pop)
{
/* If provisioning app data present,
* means provisioning app is already running */
if (g_prov) {
ESP_LOGI(TAG, "Invalid provisioning state");
return ESP_FAIL;
}
/* Allocate memory for provisioning app data */
g_prov = (struct app_prov_data *) calloc(1, sizeof(struct app_prov_data));
if (!g_prov) {
ESP_LOGI(TAG, "Unable to allocate prov data");
return ESP_ERR_NO_MEM;
}
/* Initialize app data */
g_prov->pop = pop;
g_prov->security = security;
/* Create timer object as a member of app data */
esp_timer_create_args_t timer_conf = {
.callback = _stop_prov_cb,
.arg = NULL,
.dispatch_method = ESP_TIMER_TASK,
.name = "stop_ble_tm"
};
esp_err_t err = esp_timer_create(&timer_conf, &g_prov->timer);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to create timer");
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start provisioning service through BLE */
err = app_prov_start_service();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Provisioning failed to start");
return err;
}
ESP_LOGI(TAG, "BLE Provisioning started");
return ESP_OK;
}

View File

@ -0,0 +1,79 @@
/* BLE based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#pragma once
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
/**
* @brief Get state of WiFi Station during provisioning
*
* @note WiFi is initially configured as AP, when
* provisioning starts. After provisioning data
* is provided by user, the WiFi is reconfigured
* to run as both AP and Station.
*
* @param[out] state Pointer to wifi_prov_sta_state_t variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved wifi state
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
/**
* @brief Get reason code in case of WiFi station
* disconnection during provisioning
*
* @param[out] reason Pointer to wifi_prov_sta_fail_reason_t variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved wifi disconnect reason
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Checks if device is provisioned
* *
* @param[out] provisioned True if provisioned, else false
*
* @return
* - ESP_OK : Retrieved provision state successfully
* - ESP_FAIL : Failed to retrieve provision state
*/
esp_err_t app_prov_is_provisioned(bool *provisioned);
/**
* @brief Runs WiFi as Station
*
* Configures the WiFi station mode to connect to the
* SSID and password specified in config structure,
* and starts WiFi to run as station
*
* @param[in] wifi_cfg Pointer to WiFi cofiguration structure
*
* @return
* - ESP_OK : WiFi configured and started successfully
* - ESP_FAIL : Failed to set configuration
*/
esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg);
/**
* @brief Start provisioning via Bluetooth
*
* @param[in] security Security mode
* @param[in] pop Pointer to proof of possession (NULL if not present)
*
* @return
* - ESP_OK : Provisioning started successfully
* - ESP_FAIL : Failed to start
*/
esp_err_t app_prov_start_ble_provisioning(int security, const protocomm_security_pop_t *pop);

View File

@ -15,7 +15,7 @@
#include <esp_log.h>
#include <esp_wifi.h>
#include <tcpip_adapter.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
@ -60,10 +60,9 @@ static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi
ESP_LOGI(TAG, "Connected state");
/* IP Addr assigned to STA */
tcpip_adapter_ip_info_t ip_info;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info);
char *ip_addr = ip4addr_ntoa(&ip_info.ip);
strcpy(resp_data->conn_info.ip_addr, ip_addr);
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"), &ip_info);
esp_ip4addr_ntoa(&ip_info.ip, resp_data->conn_info.ip_addr, sizeof(resp_data->conn_info.ip_addr));
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
@ -98,10 +97,14 @@ static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data,
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
memcpy((char *) wifi_cfg->sta.ssid, req_data->ssid,
strnlen(req_data->ssid, sizeof(wifi_cfg->sta.ssid)));
memcpy((char *) wifi_cfg->sta.password, req_data->password,
strnlen(req_data->password, sizeof(wifi_cfg->sta.password)));
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}

View File

@ -0,0 +1,5 @@
# Name, Type, SubType, Offset, Size, Flags
# Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1200000,
1 # Name, Type, SubType, Offset, Size, Flags
2 # Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
3 nvs, data, nvs, 0x9000, 0x6000,
4 phy_init, data, phy, 0xf000, 0x1000,
5 factory, app, factory, 0x10000, 1200000,

View File

@ -0,0 +1,10 @@
# Override some defaults so BT stack is enabled and
CONFIG_BT_ENABLED=y
CONFIG_BTDM_CTRL_MODE_BLE_ONLY=y
CONFIG_BTDM_CTRL_MODE_BR_EDR_ONLY=n
CONFIG_BTDM_CTRL_MODE_BTDM=n
# Binary is larger than default size
CONFIG_PARTITION_TABLE_CUSTOM=y
CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions.csv"
CONFIG_PARTITION_TABLE_FILENAME="partitions.csv"

View File

@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(console_prov)

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := console_prov
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,208 @@
# Console based Provisioning Example (Legacy)
> Check this example only if you wish to use console based provisioning. For any real applications, it is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
`console_prov` example demonstrates the implementation and integration of various IDF components for building a console based provisioning application.
For this example UART console is chosen as the mode of transport, over which the provisioning related communication is to take place, between the device (to be provisioned) and the client (owner of the device).
In the provisioning process the device is configured as a Wi-Fi station with specified credentials. Once configured, the device will retain the Wi-Fi configuration, until a flash erase is performed.
Right after provisioning is complete, the UART console is deactivated.
`console_prov` uses the following components :
* `wifi_provisioning` : provides data structures and protocomm endpoint handlers for Wi-Fi configuration
* `protocomm` : for protocol based communication and secure session establishment
* `protobuf` : Google's protocol buffer library for serialization of protocomm data structures
This example can be used, as it is, for adding a provisioning service to any application intended for IoT. But it is more suitable for debugging protocomm and provisioning related components and feature additions.
## How to use example
### Hardware Required
Example should be able to run on any commonly available ESP32 development board.
### Application Required
To provision the device running this example, the `esp_prov.py` script needs to be run (found under `$IDF_PATH/tools/esp_prov`). This feature of `esp_prov` should work on all platforms, given the dependencies are satisfied.
### Configure the project
```
idf.py menuconfig
```
* Under Example Configuration set the following :
* Security Version (default 1)
* Proof of Possession (default "abcd1234")
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
```
I (388) app: Starting console provisioning
I (398) app_prov: Console provisioning started
.
.
.
>>
```
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace `myssid` and `mypassword` with the credentials of the AP to which the device is supposed to connect to after provisioning). Assuming default example configuration, the script should be run as follows :
```
python esp_prov.py --transport console --proto_ver "V0.1" --sec_ver 1 --pop abcd1234 --ssid myssid --passphrase mypassword
```
A console will open up and the `Client->Device` commands have to be copied manually to the serial monitor console prompt :
```
==== Verifying protocol version ====
Client->Device msg : proto-ver 0 56302e31
Enter device->client msg :
```
On pasting the command on the serial monitor console, a `Device->Client` message will appear for each command :
```
>> proto-ver 0 56302e31
53554343455353
```
Copy this message back to the `esp_prov` console for proceeding to the next command :
```
==== Verifying protocol version ====
Client->Device msg : proto-ver 0 56302e31
Enter device->client msg : 53554343455353
==== Verified protocol version successfully ====
==== Starting Session ====
Client->Device msg : prov-session 0 10015a25a201220a20677106cc2f5b2acb5d8da26f0ad443df006daa1cd5bb3d75a8324d81ec5ef970
Enter device->client msg :
```
This process keeps on till the device gets provisioned.
Note that the commands are in the following format :
```
<endpoint name> <session id> <hex message>
```
This is helpful in understanding the provisioning process and the order in which the endpoints are communicated with.
The full execution sequence of `esp_prov`, as seen on the console, is shown here :
```
==== Verifying protocol version ====
Client->Device msg : proto-ver 0 56302e31
Enter device->client msg : 53554343455353
==== Verified protocol version successfully ====
==== Starting Session ====
Client->Device msg : prov-session 0 10015a25a201220a20677106cc2f5b2acb5d8da26f0ad443df006daa1cd5bb3d75a8324d81ec5ef970
Enter device->client msg : 10015a390801aa013412207566f4de191f600ea42de5c2b1df73f1f16685c2edb43d7c3ffc83d6b81ff61b1a103db6476536a88db10b7e0a172d4adef8
Client->Device msg : prov-session 0 10015a270802b20122122084ca311e51c904a94f8a249c049f7aed33b39671cc11f0b92b15b299ef5653b7
Enter device->client msg : 10015a270803ba01221a203246230190d5c1f5d94c01b56ac8cace1086cfb2d937a4a46cb6c79db7a35a8b
==== Session Established ====
==== Sending Wifi credential to esp32 ====
Client->Device msg : prov-config 0 8f0c8cb6f2d53c4cc53b29be8ba1aac3edbb1dead39117c34687d6
Enter device->client msg : 2e1f0eb0
==== Wifi Credentials sent successfully ====
==== Applying config to esp32 ====
Client->Device msg : prov-config 0 e8df
Enter device->client msg : 245c83f0
==== Apply config sent successfully ====
==== Wifi connection state ====
Client->Device msg : prov-config 0 2d36
Enter device->client msg : 1b38a7411b6e2608aae50a6571807e04a6e90520b3b1e3c1e5b38cea4b9022e56485b92ff84289df218311972a42eb
++++ WiFi state: connected ++++
==== Provisioning was successful ====
```
The serial monitor console, for above sequence of commands, would look like :
```
>> proto-ver 0 56302e31
53554343455353
>> prov-session 0 10015a25a201220a20677106cc2f5b2acb5d8da26f0ad443df006daa1cd5bb3d75a8324d81ec5ef970
10015a390801aa013412207566f4de191f600ea42de5c2b1df73f1f16685c2edb43d7c3ffc83d6b81ff61b1a103db6476536a88db10b7e0a172d4adef8
>> prov-session 0 10015a270802b20122122084ca311e51c904a94f8a249c049f7aed33b39671cc11f0b92b15b299ef5653b7
10015a270803ba01221a203246230190d5c1f5d94c01b56ac8cace1086cfb2d937a4a46cb6c79db7a35a8b
>> prov-config 0 8f0c8cb6f2d53c4cc53b29be8ba1aac3edbb1dead39117c34687d6
I (1073738) app_prov_handler: WiFi Credentials Received :
ssid : myssid
password : mypassword
2e1f0eb0
>> prov-config 0 e8df
I (1084218) app_prov_handler: WiFi Credentials Applied
245c83f0
>> prov-config 0 2d36
I (1089728) app_prov: STA Got IP
I (1089728) app: got ip:192.168.43.220
I (1099698) app_prov_handler: Connected state
1b38a7411b6e2608aae50a6571807e04a6e90520b3b1e3c1e5b38cea4b9022e56485b92ff84289df218311972a42eb
>>
```
After sometime the provisioning app will exit and UART console will be stopped
```
I (1119728) app_prov: Stopping provisioning
I (1119728) protocomm_console: Stopping console...
I (1119728) app_prov: Provisioning stopped
I (1119748) protocomm_console: Console stopped
```
## Troubleshooting
### Provisioning failed
It is possible that the Wi-Fi credentials provided were incorrect, or the device was not able to establish connection to the network, in which the the `esp_prov` script will notify failure (with reason) and the provisioning app will continue running, allowing the user to retry the process. Serial monitor log will display the failure along with disconnect reason :
```
E (39291) app_prov: STA Disconnected
E (39291) app_prov: Disconnect reason : 201
I (39291) app_prov: STA AP Not found
I (42021) app_prov_handler: Disconnected state
```
### Provisioning does not start
If the serial monitor log is different, as shown below :
```
I (539) app_prov: Found ssid myssid
I (539) app_prov: Found password mypassword
I (549) app: Starting WiFi station
```
It means the Wi-Fi credentials were already set by some other application flashed previously to your device. To erase these credentials either do full erase and then flash the example
```
make erase_flash
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,40 @@
menu "Example Configuration"
config EXAMPLE_USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -0,0 +1,116 @@
/* Console based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
#include <lwip/err.h>
#include <lwip/sys.h>
#include "app_prov.h"
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
static int s_retry_num = 0;
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
if (s_retry_num < EXAMPLE_AP_RECONN_ATTEMPTS) {
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
}
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
}
}
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
static void start_console_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
ESP_ERROR_CHECK(app_prov_start_console_provisioning(security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via console */
ESP_LOGI(TAG, "Starting console provisioning");
start_console_provisioning();
} else {
/* Else start as station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta();
}
}

View File

@ -0,0 +1,325 @@
/* Console based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_event.h>
#include <protocomm.h>
#include <protocomm_console.h>
#include <protocomm_security0.h>
#include <protocomm_security1.h>
#include <wifi_provisioning/wifi_config.h>
#include "app_prov.h"
static const char *TAG = "app_prov";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for wifi_config provisioning endpoint */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
/**
* @brief Data relevant to provisioning application
*/
struct app_prov_data {
protocomm_t *pc; /*!< Protocomm handler */
int security; /*!< Type of security to use with protocomm */
const protocomm_security_pop_t *pop; /*!< Pointer to proof of possession */
esp_timer_handle_t timer; /*!< Handle to timer */
/* State of WiFi Station */
wifi_prov_sta_state_t wifi_state;
/* Code for WiFi station disconnection (if disconnected) */
wifi_prov_sta_fail_reason_t wifi_disconnect_reason;
};
/* Pointer to provisioning application data */
static struct app_prov_data *g_prov;
static esp_err_t app_prov_start_service(void)
{
/* Create new protocomm instance */
g_prov->pc = protocomm_new();
if (g_prov->pc == NULL) {
ESP_LOGE(TAG, "Failed to create new protocomm instance");
return ESP_FAIL;
}
/* Config for protocomm_console_start() */
protocomm_console_config_t config = PROTOCOMM_CONSOLE_DEFAULT_CONFIG();
/* Start protocomm using console */
if (protocomm_console_start(g_prov->pc, &config) != ESP_OK) {
ESP_LOGE(TAG, "Failed to start console provisioning");
return ESP_FAIL;
}
/* Set protocomm version verification endpoint for protocol */
protocomm_set_version(g_prov->pc, "proto-ver", "V0.1");
/* Set protocomm security type for endpoint */
if (g_prov->security == 0) {
protocomm_set_security(g_prov->pc, "prov-session", &protocomm_security0, NULL);
} else if (g_prov->security == 1) {
protocomm_set_security(g_prov->pc, "prov-session", &protocomm_security1, g_prov->pop);
}
/* Add endpoint for provisioning to set wifi station config */
if (protocomm_add_endpoint(g_prov->pc, "prov-config",
wifi_prov_config_data_handler,
(void *) &wifi_prov_handlers) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set provisioning endpoint");
protocomm_console_stop(g_prov->pc);
return ESP_FAIL;
}
ESP_LOGI(TAG, "Provisioning started");
return ESP_OK;
}
static void app_prov_stop_service(void)
{
/* Remove provisioning endpoint */
protocomm_remove_endpoint(g_prov->pc, "prov-config");
/* Unset provisioning security */
protocomm_unset_security(g_prov->pc, "prov-session");
/* Unset provisioning version endpoint */
protocomm_unset_version(g_prov->pc, "proto-ver");
/* Stop protocomm console service */
protocomm_console_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
}
/* Task spawned by timer callback */
static void stop_prov_task(void * arg)
{
ESP_LOGI(TAG, "Stopping provisioning");
app_prov_stop_service();
/* Timer not needed anymore */
esp_timer_handle_t timer = g_prov->timer;
esp_timer_delete(timer);
g_prov->timer = NULL;
/* Free provisioning process data */
free(g_prov);
g_prov = NULL;
ESP_LOGI(TAG, "Provisioning stopped");
vTaskDelete(NULL);
}
/* Callback to be invoked by timer */
static void _stop_prov_cb(void * arg)
{
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* If pointer to provisioning application data is NULL
* then provisioning is not running */
if (!g_prov) {
return;
}
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTED;
if (g_prov && g_prov->timer) {
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
case WIFI_REASON_AUTH_FAIL:
case WIFI_REASON_ASSOC_FAIL:
case WIFI_REASON_HANDSHAKE_TIMEOUT:
ESP_LOGI(TAG, "STA Auth Error");
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AUTH_ERROR;
break;
case WIFI_REASON_NO_AP_FOUND:
ESP_LOGI(TAG, "STA AP Not found");
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AP_NOT_FOUND;
break;
default:
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
esp_wifi_connect();
}
}
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
{
if (g_prov == NULL || state == NULL) {
return ESP_FAIL;
}
*state = g_prov->wifi_state;
return ESP_OK;
}
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason)
{
if (g_prov == NULL || reason == NULL) {
return ESP_FAIL;
}
if (g_prov->wifi_state != WIFI_PROV_STA_DISCONNECTED) {
return ESP_FAIL;
}
*reason = g_prov->wifi_disconnect_reason;
return ESP_OK;
}
esp_err_t app_prov_is_provisioned(bool *provisioned)
{
*provisioned = false;
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
return ESP_FAIL;
}
if (strlen((const char*) wifi_cfg.sta.ssid)) {
*provisioned = true;
ESP_LOGI(TAG, "Found ssid %s", (const char*) wifi_cfg.sta.ssid);
ESP_LOGI(TAG, "Found password %s", (const char*) wifi_cfg.sta.password);
}
return ESP_OK;
}
esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
{
/* Configure WiFi as station */
if (esp_wifi_set_mode(WIFI_MODE_STA) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode");
return ESP_FAIL;
}
/* Configure WiFi station with host credentials
* provided during provisioning */
if (esp_wifi_set_config(ESP_IF_WIFI_STA, wifi_cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi configuration");
return ESP_FAIL;
}
/* Start WiFi */
if (esp_wifi_start() != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi configuration");
return ESP_FAIL;
}
/* Connect to AP */
if (esp_wifi_connect() != ESP_OK) {
ESP_LOGE(TAG, "Failed to connect WiFi");
return ESP_FAIL;
}
if (g_prov) {
/* Reset wifi station state for provisioning app */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
}
return ESP_OK;
}
esp_err_t app_prov_start_console_provisioning(int security, const protocomm_security_pop_t *pop)
{
/* If provisioning app data present,
* means provisioning app is already running */
if (g_prov) {
ESP_LOGI(TAG, "Invalid provisioning state");
return ESP_FAIL;
}
/* Allocate memory for provisioning app data */
g_prov = (struct app_prov_data *) calloc(1, sizeof(struct app_prov_data));
if (!g_prov) {
ESP_LOGI(TAG, "Unable to allocate prov data");
return ESP_ERR_NO_MEM;
}
/* Initialize app data */
g_prov->pop = pop;
g_prov->security = security;
/* Create timer object as a member of app data */
esp_timer_create_args_t timer_conf = {
.callback = _stop_prov_cb,
.arg = NULL,
.dispatch_method = ESP_TIMER_TASK,
.name = "stop_console_tm"
};
esp_err_t err = esp_timer_create(&timer_conf, &g_prov->timer);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to create timer");
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start provisioning service through console */
err = app_prov_start_service();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Provisioning failed to start");
return err;
}
ESP_LOGI(TAG, "Console provisioning started");
return ESP_OK;
}

View File

@ -0,0 +1,79 @@
/* Console based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#pragma once
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
/**
* @brief Get state of WiFi Station during provisioning
*
* @note WiFi is initially configured as AP, when
* provisioning starts. After provisioning data
* is provided by user, the WiFi is reconfigured
* to run as both AP and Station.
*
* @param[out] state Pointer to wifi_prov_sta_state_t variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved wifi state
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
/**
* @brief Get reason code in case of WiFi station
* disconnection during provisioning
*
* @param[out] reason Pointer to wifi_prov_sta_fail_reason_t variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved wifi disconnect reason
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Checks if device is provisioned
* *
* @param[out] provisioned True if provisioned, else false
*
* @return
* - ESP_OK : Retrieved provision state successfully
* - ESP_FAIL : Failed to retrieve provision state
*/
esp_err_t app_prov_is_provisioned(bool *provisioned);
/**
* @brief Runs WiFi as Station
*
* Configures the WiFi station mode to connect to the
* SSID and password specified in config structure,
* and starts WiFi to run as station
*
* @param[in] wifi_cfg Pointer to WiFi cofiguration structure
*
* @return
* - ESP_OK : WiFi configured and started successfully
* - ESP_FAIL : Failed to set configuration
*/
esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg);
/**
* @brief Start provisioning via Console
*
* @param[in] security Security mode
* @param[in] pop Pointer to proof of possession (NULL if not present)
*
* @return
* - ESP_OK : Provisioning started successfully
* - ESP_FAIL : Failed to start
*/
esp_err_t app_prov_start_console_provisioning(int security, const protocomm_security_pop_t *pop);

View File

@ -0,0 +1,131 @@
/* Console based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
/* This file is mostly a boiler-plate code that applications can use without much change */
#include <stdio.h>
#include <string.h>
#include <esp_err.h>
#include <esp_log.h>
#include <esp_wifi.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
#include "app_prov.h"
static const char* TAG = "app_prov_handler";
/* Provide definition of wifi_prov_ctx_t */
struct wifi_prov_ctx {
wifi_config_t wifi_cfg;
};
static wifi_config_t *get_config(wifi_prov_ctx_t **ctx)
{
return (*ctx ? &(*ctx)->wifi_cfg : NULL);
}
static wifi_config_t *new_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
(*ctx) = (wifi_prov_ctx_t *) calloc(1, sizeof(wifi_prov_ctx_t));
return get_config(ctx);
}
static void free_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
*ctx = NULL;
}
static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi_prov_ctx_t **ctx)
{
/* Initialize to zero */
memset(resp_data, 0, sizeof(wifi_prov_config_get_data_t));
if (app_prov_get_wifi_state(&resp_data->wifi_state) != ESP_OK) {
ESP_LOGW(TAG, "Prov app not running");
return ESP_FAIL;
}
if (resp_data->wifi_state == WIFI_PROV_STA_CONNECTED) {
ESP_LOGI(TAG, "Connected state");
/* IP Addr assigned to STA */
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"), &ip_info);
esp_ip4addr_ntoa(&ip_info.ip, resp_data->conn_info.ip_addr, sizeof(resp_data->conn_info.ip_addr));
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
esp_wifi_sta_get_ap_info(&ap_info);
memcpy(resp_data->conn_info.bssid, (char *)ap_info.bssid, sizeof(ap_info.bssid));
memcpy(resp_data->conn_info.ssid, (char *)ap_info.ssid, sizeof(ap_info.ssid));
resp_data->conn_info.channel = ap_info.primary;
resp_data->conn_info.auth_mode = ap_info.authmode;
} else if (resp_data->wifi_state == WIFI_PROV_STA_DISCONNECTED) {
ESP_LOGI(TAG, "Disconnected state");
/* If disconnected, convey reason */
app_prov_get_wifi_disconnect_reason(&resp_data->fail_reason);
} else {
ESP_LOGI(TAG, "Connecting state");
}
return ESP_OK;
}
static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data, wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (wifi_cfg) {
free_config(ctx);
}
wifi_cfg = new_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Unable to alloc wifi config");
return ESP_FAIL;
}
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}
static esp_err_t apply_config_handler(wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "WiFi config not set");
return ESP_FAIL;
}
app_prov_configure_sta(wifi_cfg);
ESP_LOGI(TAG, "WiFi Credentials Applied");
free_config(ctx);
return ESP_OK;
}
wifi_prov_config_handlers_t wifi_prov_handlers = {
.get_status_handler = get_status_handler,
.set_config_handler = set_config_handler,
.apply_config_handler = apply_config_handler,
.ctx = NULL
};

View File

@ -2,9 +2,5 @@
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# (Not part of the boilerplate)
# This example uses an extra component for common functions such as Wi-Fi and Ethernet connection.
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_examples_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(custom_config)

View File

@ -5,7 +5,5 @@
PROJECT_NAME := custom_config
EXTRA_COMPONENT_DIRS = $(IDF_PATH)/examples/common_components/protocol_examples_common
include $(IDF_PATH)/make/project.mk

View File

@ -1,4 +1,6 @@
# SoftAP + HTTPD based Provisioning Example featuring Custom configuration
# SoftAP + HTTPD based Provisioning Example featuring Custom configuration (Legacy)
> Note: It is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs. Check this example only if you wish to use lower level provisioning and protocomm APIs and want more control over the handlers.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
@ -29,11 +31,9 @@ To provision the device running this example, the `esp_prov.py` script needs to
### Configure the project
```
make menuconfig
idf.py menuconfig
```
* Set serial port under Serial Flasher Options.
* Under Example Configuration set the following :
* SoftAP SSID (Defaults to PROV_<MACID>)
* SoftAP Password (Defaults to PROV_PASS)
@ -45,7 +45,7 @@ make menuconfig
Build the project and flash it to the board, then run monitor tool to view serial output:
```
make -j4 flash monitor
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
@ -68,7 +68,7 @@ I (519482) tcpip_adapter: softAP assign IP to station,IP is: 192.168.4.2
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace the values corresponding to the parameters `--custom_info` and `--custom_ver` with your desired values for the custom configuration). Assuming default example configuration, the script should be run as follows :
```
python esp_prov.py --ssid myssid --passphrase mypassword --sec_ver 0 --transport softap --softap_endpoint 192.168.4.1:80 --custom_config --custom_info "some string" --custom_ver 4321
python esp_prov.py --transport softap --service_name "192.168.4.1:80" --sec_ver 0 --ssid myssid --passphrase mypassword --custom_config --custom_info "some string" --custom_ver 4321
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
@ -138,7 +138,7 @@ It means the Wi-Fi credentials were already set by some other application flashe
```
make erase_flash
make -j4 flash monitor
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.

View File

@ -0,0 +1,5 @@
idf_component_register(SRCS "src/custom_config.c"
"proto-c/custom_config.pb-c.c"
INCLUDE_DIRS include
PRIV_INCLUDE_DIRS proto-c
PRIV_REQUIRES protobuf-c)

View File

@ -14,7 +14,6 @@
#ifndef _CUSTOM_PROV_CONFIG_H_
#define _CUSTOM_PROV_CONFIG_H_
#include <stdlib.h>
/**
* @brief Custom config data received by device

View File

@ -0,0 +1,26 @@
cmake_minimum_required(VERSION 3.5)
set(PROTO_COMPILER "protoc")
set(PROTO_C_COMPILER "protoc-c")
set(C_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../proto-c")
set(PY_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../python")
set(PROTO_SRCS "custom_config.proto")
add_custom_target(c_proto
COMMAND ${PROTO_C_COMPILER} --c_out=${C_OUT_PATH} -I . ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(python_proto
COMMAND ${PROTO_COMPILER} --python_out=${PY_OUT_PATH} -I . ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(proto ALL
DEPENDS c_proto python_proto
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)

View File

@ -0,0 +1,27 @@
# Protobuf files for defining custom config-data packet structures
This is an example proto file defining custom configuration related data packet structures, namely -
1. CustomConfigRequest - for sending configuration data consisting of various fields (Info and Version)
2. CustomConfigResponse - for receiving configuration status (fail/success)
Note : These proto files are not automatically compiled during the build process.
# Compilation
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under `examples/provisioning/custom_config/components/custom_provisioning/proto-c` and `examples/provisioning/custom_config/components/custom_provisioning/python` directories, and thus running cmake / make (and installing the Protobuf compilers) is optional.
If using `cmake` follow the below steps. If using `make`, jump to Step 2 directly.
## Step 1 (Only for cmake)
When using cmake, first create a build directory and call cmake from inside:
```
mkdir build
cd build
cmake ..
```
## Step 2
Simply run `make` to generate the respective C and Python files. The newly created files will overwrite those under `examples/provisioning/custom_config/components/custom_provisioning/proto-c` and `examples/provisioning/custom_config/components/custom_provisioning/python`

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,58 @@
menu "Example Configuration"
config EXAMPLE_SSID
string "Wi-Fi SSID"
default "myssid"
help
SSID (network name) for the example to connect to.
config EXAMPLE_PASS
string "Wi-Fi Password"
default "mypassword"
help
Wi-Fi password (WPA or WPA2) for the example to use.
config EXAMPLE_USE_SEC_1
bool
default n
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default n
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_PROTOCOMM_HTTPD_PORT
int "Protocomm HTTP Port"
default 80
help
Port on which to run Protocomm HTTP based provisioning service
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -8,27 +8,23 @@
*/
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "esp_netif.h"
#include "esp_event.h"
#include "protocol_examples_common.h"
#include "nvs.h"
#include "nvs_flash.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
#include <lwip/err.h>
#include <lwip/sys.h>
#include "app_prov.h"
static const char *TAG = "app";
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
@ -45,44 +41,50 @@ static void event_handler(void* arg, esp_event_base_t event_base,
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:%s",
ip4addr_ntoa(&event->ip_info.ip));
ESP_LOGI(TAG, "got ip: " IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
}
}
static void wifi_init_sta()
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_start() );
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
void app_main()
static void start_softap_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_USE_SEC_1
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_USE_POP
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_POP,
.len = (sizeof(CONFIG_POP)-1)
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
ESP_ERROR_CHECK(app_prov_start_softap_provisioning(
CONFIG_EXAMPLE_SSID, CONFIG_EXAMPLE_PASS, security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
tcpip_adapter_init();
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
@ -91,6 +93,12 @@ void app_main()
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
esp_netif_create_default_wifi_ap();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
@ -101,11 +109,10 @@ void app_main()
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
app_prov_start_softap_provisioning(CONFIG_SOFTAP_SSID, CONFIG_SOFTAP_PASS,
security, pop);
start_softap_provisioning();
} else {
/* Start WiFi station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta(NULL);
wifi_init_sta();
}
}

View File

@ -13,10 +13,8 @@
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_event.h>
#include <task.h>
#include <stdlib.h>
#include <esp_timer.h>
#include <protocomm.h>
#include <protocomm_httpd.h>
#include <protocomm_security0.h>
@ -28,6 +26,9 @@
static const char *TAG = "app_prov";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for provisioning endpoints */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
extern custom_prov_config_handler_t custom_prov_handler;
@ -117,6 +118,10 @@ static void app_prov_stop_service(void)
protocomm_httpd_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
}
/* Task spawned by timer callback */
@ -145,33 +150,24 @@ static void _stop_prov_cb(void * arg)
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning.
* To be called from within the context of the main
* event handler.
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* For accessing reason codes in case of disconnection */
system_event_info_t *info = &event->event_info;
/* If pointer to provisioning application data is NULL
* then provisioning is not running, therefore return without
* error */
* then provisioning is not running */
if (!g_prov) {
return ESP_OK;
return;
}
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received by protocomm server,
* device is restarted as both AP and Station.
* Once station starts, wait for connection to
* establish with configured host SSID and password */
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
break;
case SYSTEM_EVENT_STA_GOT_IP:
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
@ -188,16 +184,16 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
* signaling a failure in provisioning. */
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
ESP_LOGE(TAG, "Disconnect reason : %d", info->disconnected.reason);
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (info->disconnected.reason) {
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
@ -215,18 +211,9 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
if (info->disconnected.reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
/*Switch to 802.11 bgn mode */
esp_wifi_set_protocol(ESP_IF_WIFI_STA, WIFI_PROTOCOL_11B | WIFI_PROTOCOL_11G | WIFI_PROTOCOL_11N);
}
esp_wifi_connect();
}
break;
default:
break;
}
return ESP_OK;
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
@ -255,25 +242,15 @@ esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reaso
esp_err_t app_prov_is_provisioned(bool *provisioned)
{
#ifdef CONFIG_RESET_PROVISIONED
*provisioned = false;
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
if (nvs_flash_init() != ESP_OK) {
ESP_LOGE(TAG, "Failed to init NVS");
return ESP_FAIL;
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
if (esp_wifi_init(&cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to init wifi");
return ESP_FAIL;
}
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
*provisioned = false;
return ESP_FAIL;
}
@ -318,14 +295,6 @@ esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Initialize WiFi with default configuration */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_err_t err = esp_wifi_init(&cfg);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to init WiFi : %d", err);
return err;
}
/* Build WiFi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
@ -333,19 +302,18 @@ static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strlen(ssid);
strlcpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strncpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Start WiFi in AP mode with configuration built above */
err = esp_wifi_set_mode(WIFI_MODE_AP);
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_AP);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode : %d", err);
return err;
@ -381,7 +349,7 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return ESP_ERR_NO_MEM;
}
/* Initialise app data */
/* Initialize app data */
g_prov->pop = pop;
g_prov->security = security;
@ -398,6 +366,18 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start WiFi softAP with specified ssid and password */
err = start_wifi_ap(ssid, pass);
if (err != ESP_OK) {

View File

@ -9,7 +9,7 @@
#pragma once
#include <esp_event_loop.h>
#include <esp_event.h>
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
@ -43,21 +43,6 @@ esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Event handler for provisioning app
*
* This is called from the main event handler and controls the
* provisioning application, depeding on WiFi events
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
* - ESP_FAIL : Failed to start server on event AP start
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event);
/**
* @brief Checks if device is provisioned
* *

View File

@ -15,7 +15,7 @@
#include <esp_log.h>
#include <esp_wifi.h>
#include <tcpip_adapter.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
#include <custom_provisioning/custom_config.h>
@ -72,10 +72,9 @@ static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi
ESP_LOGI(TAG, "Connected state");
/* IP Addr assigned to STA */
tcpip_adapter_ip_info_t ip_info;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info);
char *ip_addr = ip4addr_ntoa(&ip_info.ip);
strcpy(resp_data->conn_info.ip_addr, ip_addr);
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"), &ip_info);
esp_ip4addr_ntoa(&ip_info.ip, resp_data->conn_info.ip_addr, sizeof(resp_data->conn_info.ip_addr));
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
@ -110,10 +109,14 @@ static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data,
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
memcpy((char *) wifi_cfg->sta.ssid, req_data->ssid,
strnlen(req_data->ssid, sizeof(wifi_cfg->sta.ssid)));
memcpy((char *) wifi_cfg->sta.password, req_data->password,
strnlen(req_data->password, sizeof(wifi_cfg->sta.password)));
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}

View File

@ -0,0 +1,8 @@
#
# Main component makefile.
#
# This Makefile can be left empty. By default, it will take the sources in the
# src/ directory, compile them and link them into lib(subdirectory_name).a
# in the build directory. This behaviour is entirely configurable,
# please read the ESP-IDF documents if you need to do this.
#

View File

@ -2,9 +2,5 @@
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# (Not part of the boilerplate)
# This example uses an extra component for common functions such as Wi-Fi and Ethernet connection.
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_examples_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(softap_prov)

View File

@ -5,7 +5,5 @@
PROJECT_NAME := softap_prov
EXTRA_COMPONENT_DIRS = $(IDF_PATH)/examples/common_components/protocol_examples_common
include $(IDF_PATH)/make/project.mk

View File

@ -1,4 +1,6 @@
# SoftAP + HTTPD based Provisioning Example
# SoftAP + HTTPD based Provisioning Example (Legacy)
> Note: It is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs. Check this example only if you wish to use lower level provisioning and protocomm APIs and want more control over the handlers.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
@ -42,11 +44,9 @@ To provision the device running this example, the `esp_prov.py` script needs to
### Configure the project
```
make menuconfig
idf.py menuconfig
```
* Set serial port under Serial Flasher Options.
* Under Example Configuration set the following :
* SoftAP SSID (Defaults to PROV_<MACID>)
* SoftAP Password (Defaults to PROV_PASS)
@ -58,7 +58,7 @@ make menuconfig
Build the project and flash it to the board, then run monitor tool to view serial output:
```
make -j4 flash monitor
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
@ -81,7 +81,7 @@ I (519482) tcpip_adapter: softAP assign IP to station,IP is: 192.168.4.2
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace `myssid` and `mypassword` with the credentials of the AP to which the device is supposed to connect to after provisioning). The SoftAP endpoint corresponds to the IP and port of the device on the SoftAP network, but this is usually same as the default value and may be left out. Assuming default example configuration, the script should be run as follows :
```
python esp_prov.py --ssid myssid --passphrase mypassword --sec_ver 1 --pop abcd1234 --transport softap --softap_endpoint 192.168.4.1:80
python esp_prov.py --transport softap --service_name "192.168.4.1:80" --sec_ver 1 --pop abcd1234 --ssid myssid --passphrase mypassword
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
@ -145,7 +145,7 @@ It means the Wi-Fi credentials were already set by some other application flashe
```
make erase_flash
make -j4 flash monitor
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,59 @@
menu "Example Configuration"
config EXAMPLE_SSID_SET_MAC
bool "Use MAC as SSID"
default y
help
Set SoftAP SSID as PROV_<MAC>.
config EXAMPLE_SSID
string "Wi-Fi SSID"
default "PROV_SSID"
depends on !EXAMPLE_SSID_SET_MAC
help
SSID (network name) for the example to connect to.
config EXAMPLE_PASS
string "Wi-Fi Password"
default "PROV_PASS"
help
Wi-Fi password (WPA or WPA2) for the example to use.
config EXAMPLE_USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -12,7 +12,7 @@
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event_loop.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
@ -21,10 +21,10 @@
#include "app_prov.h"
static const char *TAG = "app";
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
@ -41,66 +41,46 @@ static void event_handler(void* arg, esp_event_base_t event_base,
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:%s",
ip4addr_ntoa(&event->ip_info.ip));
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
}
}
static void wifi_init_sta()
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_start() );
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
void app_main()
static void start_softap_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_USE_SEC_1
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_USE_POP
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_POP,
.len = (sizeof(CONFIG_POP)-1)
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
/* Initialize networking stack */
tcpip_adapter_init();
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
const char *ssid = NULL;
#ifdef CONFIG_SOFTAP_SSID
ssid = CONFIG_SOFTAP_SSID;
#ifdef CONFIG_EXAMPLE_SSID
ssid = CONFIG_EXAMPLE_SSID;
#else
uint8_t eth_mac[6];
esp_wifi_get_mac(WIFI_IF_STA, eth_mac);
@ -112,11 +92,42 @@ void app_main()
ssid = ssid_with_mac;
#endif
app_prov_start_softap_provisioning(ssid, CONFIG_SOFTAP_PASS,
security, pop);
ESP_ERROR_CHECK(app_prov_start_softap_provisioning(
ssid, CONFIG_EXAMPLE_PASS, security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
esp_netif_create_default_wifi_ap();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
start_softap_provisioning();
} else {
/* Start WiFi station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta(NULL);
wifi_init_sta();
}
}

View File

@ -13,10 +13,8 @@
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_event.h>
#include <task.h>
#include <stdlib.h>
#include <esp_timer.h>
#include <protocomm.h>
#include <protocomm_httpd.h>
#include <protocomm_security0.h>
@ -27,6 +25,9 @@
static const char *TAG = "app_prov";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for wifi_config provisioning endpoint */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
@ -103,6 +104,10 @@ static void app_prov_stop_service(void)
protocomm_httpd_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
}
/* Task spawned by timer callback */
@ -131,33 +136,24 @@ static void _stop_prov_cb(void * arg)
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning.
* To be called from within the context of the main
* event handler.
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* For accessing reason codes in case of disconnection */
system_event_info_t *info = &event->event_info;
/* If pointer to provisioning application data is NULL
* then provisioning is not running, therefore return without
* error */
* then provisioning is not running */
if (!g_prov) {
return ESP_OK;
return;
}
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received by protocomm server,
* device is restarted as both AP and Station.
* Once station starts, wait for connection to
* establish with configured host SSID and password */
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
break;
case SYSTEM_EVENT_STA_GOT_IP:
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
@ -174,16 +170,16 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
* signaling a failure in provisioning. */
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
ESP_LOGE(TAG, "Disconnect reason : %d", info->disconnected.reason);
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (info->disconnected.reason) {
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
@ -198,21 +194,12 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AP_NOT_FOUND;
break;
default:
if (info->disconnected.reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
/*Switch to 802.11 bgn mode */
esp_wifi_set_protocol(ESP_IF_WIFI_STA, WIFI_PROTOCOL_11B | WIFI_PROTOCOL_11G | WIFI_PROTOCOL_11N);
}
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
esp_wifi_connect();
}
break;
default:
break;
}
return ESP_OK;
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
@ -243,21 +230,10 @@ esp_err_t app_prov_is_provisioned(bool *provisioned)
{
*provisioned = false;
#ifdef CONFIG_RESET_PROVISIONED
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
if (nvs_flash_init() != ESP_OK) {
ESP_LOGE(TAG, "Failed to init NVS");
return ESP_FAIL;
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
if (esp_wifi_init(&cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to init wifi");
return ESP_FAIL;
}
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
@ -305,14 +281,6 @@ esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Initialize WiFi with default configuration */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_err_t err = esp_wifi_init(&cfg);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to init WiFi : %d", err);
return err;
}
/* Build WiFi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
@ -320,19 +288,18 @@ static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strlen(ssid);
strlcpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strncpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Start WiFi in AP mode with configuration built above */
err = esp_wifi_set_mode(WIFI_MODE_AP);
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_AP);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode : %d", err);
return err;
@ -385,6 +352,18 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start WiFi softAP with specified ssid and password */
err = start_wifi_ap(ssid, pass);
if (err != ESP_OK) {

View File

@ -9,7 +9,7 @@
#pragma once
#include <esp_event_loop.h>
#include <esp_event.h>
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
@ -42,21 +42,6 @@ esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Event handler for provisioning app
*
* This is called from the main event handler and controls the
* provisioning application, depeding on WiFi events
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
* - ESP_FAIL : Failed to start server on event AP start
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event);
/**
* @brief Checks if device is provisioned
* *

View File

@ -0,0 +1,131 @@
/* SoftAP based Provisioning Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
/* This file is mostly a boiler-plate code that applications can use without much change */
#include <stdio.h>
#include <string.h>
#include <esp_err.h>
#include <esp_log.h>
#include <esp_wifi.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
#include "app_prov.h"
static const char* TAG = "app_prov_handler";
/* Provide definition of wifi_prov_ctx_t */
struct wifi_prov_ctx {
wifi_config_t wifi_cfg;
};
static wifi_config_t *get_config(wifi_prov_ctx_t **ctx)
{
return (*ctx ? &(*ctx)->wifi_cfg : NULL);
}
static wifi_config_t *new_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
(*ctx) = (wifi_prov_ctx_t *) calloc(1, sizeof(wifi_prov_ctx_t));
return get_config(ctx);
}
static void free_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
*ctx = NULL;
}
static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi_prov_ctx_t **ctx)
{
/* Initialize to zero */
memset(resp_data, 0, sizeof(wifi_prov_config_get_data_t));
if (app_prov_get_wifi_state(&resp_data->wifi_state) != ESP_OK) {
ESP_LOGW(TAG, "Prov app not running");
return ESP_FAIL;
}
if (resp_data->wifi_state == WIFI_PROV_STA_CONNECTED) {
ESP_LOGI(TAG, "Connected state");
/* IP Addr assigned to STA */
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"), &ip_info);
esp_ip4addr_ntoa(&ip_info.ip, resp_data->conn_info.ip_addr, sizeof(resp_data->conn_info.ip_addr));
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
esp_wifi_sta_get_ap_info(&ap_info);
memcpy(resp_data->conn_info.bssid, (char *)ap_info.bssid, sizeof(ap_info.bssid));
memcpy(resp_data->conn_info.ssid, (char *)ap_info.ssid, sizeof(ap_info.ssid));
resp_data->conn_info.channel = ap_info.primary;
resp_data->conn_info.auth_mode = ap_info.authmode;
} else if (resp_data->wifi_state == WIFI_PROV_STA_DISCONNECTED) {
ESP_LOGI(TAG, "Disconnected state");
/* If disconnected, convey reason */
app_prov_get_wifi_disconnect_reason(&resp_data->fail_reason);
} else {
ESP_LOGI(TAG, "Connecting state");
}
return ESP_OK;
}
static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data, wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (wifi_cfg) {
free_config(ctx);
}
wifi_cfg = new_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Unable to alloc wifi config");
return ESP_FAIL;
}
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}
static esp_err_t apply_config_handler(wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "WiFi config not set");
return ESP_FAIL;
}
app_prov_configure_sta(wifi_cfg);
ESP_LOGI(TAG, "WiFi Credentials Applied");
free_config(ctx);
return ESP_OK;
}
wifi_prov_config_handlers_t wifi_prov_handlers = {
.get_status_handler = get_status_handler,
.set_config_handler = set_config_handler,
.apply_config_handler = apply_config_handler,
.ctx = NULL
};

View File

@ -0,0 +1,8 @@
#
# Main component makefile.
#
# This Makefile can be left empty. By default, it will take the sources in the
# src/ directory, compile them and link them into lib(subdirectory_name).a
# in the build directory. This behaviour is entirely configurable,
# please read the ESP-IDF documents if you need to do this.
#

View File

@ -0,0 +1,116 @@
#!/usr/bin/env python
#
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import re
import os
import time
import ttfw_idf
import esp_prov
import wifi_tools
# Have esp_prov throw exception
esp_prov.config_throw_except = True
@ttfw_idf.idf_example_test(env_tag="Example_WIFI_BT")
def test_examples_provisioning_softap(env, extra_data):
# Acquire DUT
dut1 = env.get_dut("softap_prov", "examples/provisioning/legacy/softap_prov", dut_class=ttfw_idf.ESP32DUT)
# Get binary file
binary_file = os.path.join(dut1.app.binary_path, "softap_prov.bin")
bin_size = os.path.getsize(binary_file)
ttfw_idf.log_performance("softap_prov_bin_size", "{}KB".format(bin_size // 1024))
ttfw_idf.check_performance("softap_prov_bin_size", bin_size // 1024, dut1.TARGET)
# Upload binary and start testing
dut1.start_app()
# Parse IP address of STA
dut1.expect("Starting WiFi SoftAP provisioning", timeout=60)
[ssid, password] = dut1.expect(re.compile(r"SoftAP Provisioning started with SSID '(\S+)', Password '(\S+)'"), timeout=30)
iface = wifi_tools.get_wiface_name()
if iface is None:
raise RuntimeError("Failed to get Wi-Fi interface on host")
print("Interface name : " + iface)
print("SoftAP SSID : " + ssid)
print("SoftAP Password : " + password)
ctrl = wifi_tools.wpa_cli(iface, reset_on_exit=True)
print("Connecting to DUT SoftAP...")
ip = ctrl.connect(ssid, password)
got_ip = dut1.expect(re.compile(r"DHCP server assigned IP to a station, IP is: (\d+.\d+.\d+.\d+)"), timeout=30)[0]
if ip != got_ip:
raise RuntimeError("SoftAP connected to another host! " + ip + "!=" + got_ip)
print("Connected to DUT SoftAP")
print("Starting Provisioning")
verbose = False
protover = "V0.1"
secver = 1
pop = "abcd1234"
provmode = "softap"
ap_ssid = "myssid"
ap_password = "mypassword"
softap_endpoint = ip.split('.')[0] + "." + ip.split('.')[1] + "." + ip.split('.')[2] + ".1:80"
print("Getting security")
security = esp_prov.get_security(secver, pop, verbose)
if security is None:
raise RuntimeError("Failed to get security")
print("Getting transport")
transport = esp_prov.get_transport(provmode, softap_endpoint)
if transport is None:
raise RuntimeError("Failed to get transport")
print("Verifying protocol version")
if not esp_prov.version_match(transport, protover):
raise RuntimeError("Mismatch in protocol version")
print("Starting Session")
if not esp_prov.establish_session(transport, security):
raise RuntimeError("Failed to start session")
print("Sending Wifi credential to DUT")
if not esp_prov.send_wifi_config(transport, security, ap_ssid, ap_password):
raise RuntimeError("Failed to send Wi-Fi config")
print("Applying config")
if not esp_prov.apply_wifi_config(transport, security):
raise RuntimeError("Failed to send apply config")
success = False
while True:
time.sleep(5)
print("Wi-Fi connection state")
ret = esp_prov.get_wifi_config(transport, security)
if (ret == 1):
continue
elif (ret == 0):
print("Provisioning was successful")
success = True
break
if not success:
raise RuntimeError("Provisioning failed")
if __name__ == '__main__':
test_examples_provisioning_softap()

View File

@ -1,6 +0,0 @@
set(COMPONENT_SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c")
set(COMPONENT_ADD_INCLUDEDIRS ".")
register_component()

View File

@ -1,59 +0,0 @@
menu "Example Configuration"
config SOFTAP_SSID_SET_MAC
bool "Use MAC as SSID"
default y
help
Set SoftAP SSID as PROV_<MAC>.
config SOFTAP_SSID
string "WiFi SSID"
default "PROV_SSID"
depends on !SOFTAP_SSID_SET_MAC
help
SSID (network name) for the example to connect to.
config SOFTAP_PASS
string "WiFi Password"
default "PROV_PASS"
help
WiFi password (WPA or WPA2) for the example to use.
config USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config USE_POP
bool
depends on USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config POP
string "Proof-of-possession"
default "abcd1234"
depends on USE_POP
config RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the WiFi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -1,3 +0,0 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y
CONFIG_LWIP_NETIF_LOOPBACK=y
CONFIG_LWIP_LOOPBACK_MAX_PBUFS=1

View File

@ -1,98 +0,0 @@
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dbus
import dbus.mainloop.glib
import netifaces
import time
def get_wiface_name():
for iface in netifaces.interfaces():
if iface.startswith('w'):
return iface
return None
def get_wiface_IPv4(iface):
try:
[info] = netifaces.ifaddresses(iface)[netifaces.AF_INET]
return info['addr']
except KeyError:
return None
class wpa_cli:
def __init__(self, iface, reset_on_exit = False):
self.iface_name = iface
self.iface_obj = None
self.iface_ifc = None
self.old_network = None
self.new_network = None
self.connected = False
self.reset_on_exit = reset_on_exit
dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)
bus = dbus.SystemBus()
service = dbus.Interface(bus.get_object("fi.w1.wpa_supplicant1", "/fi/w1/wpa_supplicant1"), "fi.w1.wpa_supplicant1")
paths = service.Get("fi.w1.wpa_supplicant1", "Interfaces", dbus_interface='org.freedesktop.DBus.Properties')
iface_path = service.GetInterface(self.iface_name)
self.iface_obj = bus.get_object("fi.w1.wpa_supplicant1", iface_path)
self.iface_ifc = dbus.Interface(self.iface_obj, "fi.w1.wpa_supplicant1.Interface")
if self.iface_ifc == None:
raise RuntimeError('supplicant : Failed to fetch interface')
self.old_network = self.iface_obj.Get("fi.w1.wpa_supplicant1.Interface", "CurrentNetwork", dbus_interface='org.freedesktop.DBus.Properties')
if self.old_network == '/':
self.old_network = None
else:
self.connected = True
def connect(self, ssid, password):
if self.connected == True:
self.iface_ifc.Disconnect()
self.connected = False
if self.new_network != None:
self.iface_ifc.RemoveNetwork(self.new_network)
self.new_network = self.iface_ifc.AddNetwork({"ssid": ssid, "psk": password})
self.iface_ifc.SelectNetwork(self.new_network)
ip = None
retry = 10
while retry > 0:
time.sleep(5)
ip = get_wiface_IPv4(self.iface_name)
if ip != None:
self.connected = True
return ip
retry -= 1
self.reset()
raise RuntimeError('wpa_cli : Connection failed')
def reset(self):
if self.iface_ifc != None:
if self.connected == True:
self.iface_ifc.Disconnect()
self.connected = False
if self.new_network != None:
self.iface_ifc.RemoveNetwork(self.new_network)
self.new_network = None
if self.old_network != None:
self.iface_ifc.SelectNetwork(self.old_network)
self.old_network = None
def __del__(self):
if self.reset_on_exit == True:
self.reset()

View File

@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(wifi_prov_mgr)

View File

@ -0,0 +1,9 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := wifi_prov_mgr
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,286 @@
# Wi-Fi Provisioning Manager Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
`wifi_prov_mgr` example demonstrates the usage of `wifi_provisioning` manager component for building a provisioning application.
For this example, BLE is chosen as the default mode of transport, over which the provisioning related communication is to take place. NimBLE has been configured as the default host, but you can also switch to Bluedroid using menuconfig -> Components -> Bluetooth -> Bluetooth Host.
> Note: Since ESP32-S2 does not support BLE, the SoftAP will be the default mode of transport in that case. Even for ESP32, you can change to SoftAP transport from menuconfig.
In the provisioning process the device is configured as a Wi-Fi station with specified credentials. Once configured, the device will retain the Wi-Fi configuration, until a flash erase is performed.
Right after provisioning is complete, BLE is turned off and disabled to free the memory used by the BLE stack. Though, that is specific to this example, and the user can choose to keep BLE stack intact in their own application.
`wifi_prov_mgr` uses the following components :
* `wifi_provisioning` : provides manager, data structures and protocomm endpoint handlers for Wi-Fi configuration
* `protocomm` : for protocol based communication and secure session establishment
* `protobuf` : Google's protocol buffer library for serialization of protocomm data structures
* `bt` : ESP32 BLE stack for transport of protobuf packets
This example can be used, as it is, for adding a provisioning service to any application intended for IoT.
## How to use example
### Hardware Required
Example should be able to run on any commonly available ESP32/ESP32-S2 development board.
### Application Required
Provisioning applications are available for various platforms. See below
#### Platform : Android
For Android, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android)
#### Platform : iOS
For iOS, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
#### Platform : Linux / Windows / macOS
To provision the device running this example, the `esp_prov.py` script needs to be run (found under `$IDF_PATH/tools/esp_prov`). Make sure to satisfy all the dependencies prior to running the script.
Presently, `esp_prov` supports BLE transport only for Linux platform. For Windows/macOS it falls back to console mode and requires another application (for BLE) through which the communication can take place.
There are various applications, specific to Windows and macOS platform which can be used. The `esp_prov` console will guide you through the provisioning process of locating the correct BLE GATT services and characteristics, the values to write, and input read values.
### Configure the project
```
idf.py menuconfig
```
* Set the BLE/Soft AP transport under "Example Configuration" options. ESP32-S2 will have only SoftAP option.
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
```
I (445) app: Starting provisioning
I (1035) app: Provisioning started
I (1045) wifi_prov_mgr: Provisioning started with service name : PROV_261FCC
```
Make sure to note down the BLE device name (starting with `PROV_`) displayed in the serial monitor log (eg. PROV_261FCC). This will depend on the MAC ID and will be unique for every device.
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (make sure to replace `myssid` and `mypassword` with the credentials of the AP to which the device is supposed to connect to after provisioning). Assuming default example configuration, which uses protocomm security scheme 1 and proof of possession PoP based authentication :
```
python esp_prov.py --transport ble --service_name PROV_261FCC --sec_ver 1 --pop abcd1234 --ssid myssid --passphrase mypassword
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
```
I (39725) app: Received Wi-Fi credentials
SSID : myssid
Password : mypassword
.
.
.
I (45335) tcpip_adapter: sta ip: 192.168.43.243, mask: 255.255.255.0, gw: 192.168.43.1
I (45345) app: Provisioning successful
I (45345) app: Connected with IP Address:192.168.43.243
I (46355) app: Hello World!
I (47355) app: Hello World!
I (48355) app: Hello World!
I (49355) app: Hello World!
.
.
.
I (52315) wifi_prov_mgr: Provisioning stopped
.
.
.
I (52355) app: Hello World!
I (53355) app: Hello World!
I (54355) app: Hello World!
I (55355) app: Hello World!
```
### Wi-Fi Scanning
Provisioning manager also supports providing real-time Wi-Fi scan results (performed on the device) during provisioning. This allows the client side applications to choose the AP for which the device Wi-Fi station is to be configured. Various information about the visible APs is available, like signal strength (RSSI) and security type, etc. Also, the manager now provides capabilities information which can be used by client applications to determine the security type and availability of specific features (like `wifi_scan`).
When using the scan based provisioning, we don't need to specify the `--ssid` and `--passphrase` fields explicitly:
```
python esp_prov.py --transport ble --service_name PROV_261FCC --pop abcd1234
```
See below the sample output from `esp_prov` tool on running above command:
```
Connecting...
Connected
Getting Services...
Security scheme determined to be : 1
==== Starting Session ====
==== Session Established ====
==== Scanning Wi-Fi APs ====
++++ Scan process executed in 1.9967520237 sec
++++ Scan results : 5
++++ Scan finished in 2.7374596596 sec
==== Wi-Fi Scan results ====
S.N. SSID BSSID CHN RSSI AUTH
[ 1] MyHomeWiFiAP 788a20841996 1 -45 WPA2_PSK
[ 2] MobileHotspot 7a8a20841996 11 -46 WPA2_PSK
[ 3] MyHomeWiFiAP 788a208daa26 11 -54 WPA2_PSK
[ 4] NeighborsWiFiAP 8a8a20841996 6 -61 WPA2_PSK
[ 5] InsecureWiFiAP dca4caf1227c 7 -74 Open
Select AP by number (0 to rescan) : 1
Enter passphrase for MyHomeWiFiAP :
==== Sending Wi-Fi credential to esp32 ====
==== Wi-Fi Credentials sent successfully ====
==== Applying config to esp32 ====
==== Apply config sent successfully ====
==== Wi-Fi connection state ====
++++ WiFi state: connected ++++
==== Provisioning was successful ====
```
### Sending Custom Data
The provisioning manager allows applications to send some custom data during provisioning, which may be
required for some other operations like connecting to some cloud service. This is achieved by creating
and registering additional endpoints using the below APIs
```
wifi_prov_mgr_endpoint_create();
wifi_prov_mgr_endpoint_register();
```
In this particular example, we have added an endpoint named "custom-data" which can be tested
by passing the `--custom_data <MyCustomData>` option to the esp\_prov tool. Following output is
expected on success:
```
==== Sending Custom data to esp32 ====
CustomData response: SUCCESS
```
## Troubleshooting
### Provisioning failed
It is possible that the Wi-Fi credentials provided were incorrect, or the device was not able to establish connection to the network, in which the the `esp_prov` script will notify failure (with reason). Serial monitor log will display the failure along with disconnect reason :
```
E (367015) app: Provisioning failed!
Reason : Wi-Fi AP password incorrect
Please reset to factory and retry provisioning
```
Once credentials have been applied, even though wrong credentials were provided, the device will no longer go into provisioning mode on subsequent reboots until NVS is erased (see following section).
### Provisioning does not start
If the serial monitor log shows the following :
```
I (465) app: Already provisioned, starting Wi-Fi STA
```
it means either the device has been provisioned earlier with or without success (e.g. scenario covered in above section), or that the Wi-Fi credentials were already set by some other application flashed previously onto your device. On setting the log level to DEBUG this is clearly evident :
```
D (455) wifi_prov_mgr: Found Wi-Fi SSID : myssid
D (465) wifi_prov_mgr: Found Wi-Fi Password : m********d
I (465) app: Already provisioned, starting Wi-Fi STA
```
To fix this we simple need to erase the NVS partition from flash. First we need to find out its address and size. This can be seen from the monitor log on the top right after reboot.
```
I (47) boot: Partition Table:
I (50) boot: ## Label Usage Type ST Offset Length
I (58) boot: 0 nvs WiFi data 01 02 00009000 00006000
I (65) boot: 1 phy_init RF data 01 01 0000f000 00001000
I (73) boot: 2 factory factory app 00 00 00010000 00124f80
I (80) boot: End of partition table
```
Now erase NVS partition by running the following commands :
```
$IDF_PATH/components/esptool_py/esptool/esptool.py erase_region 0x9000 0x6000
```
### Unsupported platform
If the platform requirement, for running `esp_prov` is not satisfied, then the script execution will fallback to console mode, in which case the full process (involving user inputs) will look like this :
```
==== Esp_Prov Version: v1.0 ====
BLE client is running in console mode
This could be due to your platform not being supported or dependencies not being met
Please ensure all pre-requisites are met to run the full fledged client
BLECLI >> Please connect to BLE device `PROV_261FCC` manually using your tool of choice
BLECLI >> Was the device connected successfully? [y/n] y
BLECLI >> List available attributes of the connected device
BLECLI >> Is the service UUID '0000ffff-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff53-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff51-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
BLECLI >> Is the characteristic UUID '0000ff52-0000-1000-8000-00805f9b34fb' listed among available attributes? [y/n] y
==== Verifying protocol version ====
BLECLI >> Write following data to characteristic with UUID '0000ff53-0000-1000-8000-00805f9b34fb' :
>> 56302e31
BLECLI >> Enter data read from characteristic (in hex) :
<< 53554343455353
==== Verified protocol version successfully ====
==== Starting Session ====
BLECLI >> Write following data to characteristic with UUID '0000ff51-0000-1000-8000-00805f9b34fb' :
>> 10015a25a201220a20ae6d9d5d1029f8c366892252d2d5a0ffa7ce1ee5829312545dd5f2aba057294d
BLECLI >> Enter data read from characteristic (in hex) :
<< 10015a390801aa0134122048008bfc365fad4753dc75912e0c764d60749cb26dd609595b6fbc72e12614031a1089733af233c7448e7d7fb7963682c6d8
BLECLI >> Write following data to characteristic with UUID '0000ff51-0000-1000-8000-00805f9b34fb' :
>> 10015a270802b2012212204051088dc294fe4621fac934a8ea22e948fcc3e8ac458aac088ce705c65dbfb9
BLECLI >> Enter data read from characteristic (in hex) :
<< 10015a270803ba01221a20c8d38059d5206a3d92642973ac6ba8ac2f6ecf2b7a3632964eb35a0f20133adb
==== Session Established ====
==== Sending Wifi credential to esp32 ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 98471ac4019a46765c28d87df8c8ae71c1ae6cfe0bc9c615bc6d2c
BLECLI >> Enter data read from characteristic (in hex) :
<< 3271f39a
==== Wifi Credentials sent successfully ====
==== Applying config to esp32 ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 5355
BLECLI >> Enter data read from characteristic (in hex) :
<< 1664db24
==== Apply config sent successfully ====
==== Wifi connection state ====
BLECLI >> Write following data to characteristic with UUID '0000ff52-0000-1000-8000-00805f9b34fb' :
>> 290d
BLECLI >> Enter data read from characteristic (in hex) :
<< 505f72a9f8521025c1964d7789c4d7edc56aedebd144e1b667bc7c0975757b80cc091aa9f3e95b06eaefbc30290fa1
++++ WiFi state: connected ++++
==== Provisioning was successful ====
```
The write data is to be copied from the console output ```>>``` to the platform specific application and the data read from the application is to be pasted at the user input prompt ```<<``` of the console, in the format (hex) indicated in above sample log.

View File

@ -0,0 +1,2 @@
idf_component_register(SRCS "app_main.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,22 @@
menu "Example Configuration"
choice EXAMPLE_PROV_TRANSPORT
bool "Provisioning Transport"
default EXAMPLE_PROV_TRANSPORT_BLE
help
Wi-Fi provisioning component offers both, SoftAP and BLE transports. Choose any one.
config EXAMPLE_PROV_TRANSPORT_BLE
bool "BLE"
select BT_ENABLED
depends on IDF_TARGET_ESP32
config EXAMPLE_PROV_TRANSPORT_SOFTAP
bool "Soft AP"
endchoice
config EXAMPLE_PROV_TRANSPORT
int
default 1 if EXAMPLE_PROV_TRANSPORT_BLE
default 2 if EXAMPLE_PROV_TRANSPORT_SOFTAP
endmenu

View File

@ -0,0 +1,282 @@
/* Wi-Fi Provisioning Manager Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/event_groups.h>
#include <esp_log.h>
#include <esp_wifi.h>
#include <esp_event.h>
#include <nvs_flash.h>
#include <wifi_provisioning/manager.h>
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_BLE
#include <wifi_provisioning/scheme_ble.h>
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_BLE */
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP
#include <wifi_provisioning/scheme_softap.h>
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP */
static const char *TAG = "app";
/* Signal Wi-Fi events on this event-group */
const int WIFI_CONNECTED_EVENT = BIT0;
static EventGroupHandle_t wifi_event_group;
/* Event handler for catching system events */
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
if (event_base == WIFI_PROV_EVENT) {
switch (event_id) {
case WIFI_PROV_START:
ESP_LOGI(TAG, "Provisioning started");
break;
case WIFI_PROV_CRED_RECV: {
wifi_sta_config_t *wifi_sta_cfg = (wifi_sta_config_t *)event_data;
ESP_LOGI(TAG, "Received Wi-Fi credentials"
"\n\tSSID : %s\n\tPassword : %s",
(const char *) wifi_sta_cfg->ssid,
(const char *) wifi_sta_cfg->password);
break;
}
case WIFI_PROV_CRED_FAIL: {
wifi_prov_sta_fail_reason_t *reason = (wifi_prov_sta_fail_reason_t *)event_data;
ESP_LOGE(TAG, "Provisioning failed!\n\tReason : %s"
"\n\tPlease reset to factory and retry provisioning",
(*reason == WIFI_PROV_STA_AUTH_ERROR) ?
"Wi-Fi station authentication failed" : "Wi-Fi access-point not found");
break;
}
case WIFI_PROV_CRED_SUCCESS:
ESP_LOGI(TAG, "Provisioning successful");
break;
case WIFI_PROV_END:
/* De-initialize manager once provisioning is finished */
wifi_prov_mgr_deinit();
break;
default:
break;
}
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "Connected with IP Address:" IPSTR, IP2STR(&event->ip_info.ip));
/* Signal main application to continue execution */
xEventGroupSetBits(wifi_event_group, WIFI_CONNECTED_EVENT);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGI(TAG, "Disconnected. Connecting to the AP again...");
esp_wifi_connect();
}
}
static void wifi_init_sta(void)
{
/* Start Wi-Fi in station mode */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
static void get_device_service_name(char *service_name, size_t max)
{
uint8_t eth_mac[6];
const char *ssid_prefix = "PROV_";
esp_wifi_get_mac(WIFI_IF_STA, eth_mac);
snprintf(service_name, max, "%s%02X%02X%02X",
ssid_prefix, eth_mac[3], eth_mac[4], eth_mac[5]);
}
/* Handler for the optional provisioning endpoint registered by the application.
* The data format can be chosen by applications. Here, we are using plain ascii text.
* Applications can choose to use other formats like protobuf, JSON, XML, etc.
*/
esp_err_t custom_prov_data_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data)
{
if (inbuf) {
ESP_LOGI(TAG, "Received data: %.*s", inlen, (char *)inbuf);
}
char response[] = "SUCCESS";
*outbuf = (uint8_t *)strdup(response);
if (*outbuf == NULL) {
ESP_LOGE(TAG, "System out of memory");
return ESP_ERR_NO_MEM;
}
*outlen = strlen(response) + 1; /* +1 for NULL terminating byte */
return ESP_OK;
}
void app_main(void)
{
/* Initialize NVS partition */
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
/* NVS partition was truncated
* and needs to be erased */
ESP_ERROR_CHECK(nvs_flash_erase());
/* Retry nvs_flash_init */
ESP_ERROR_CHECK(nvs_flash_init());
}
/* Initialize TCP/IP */
ESP_ERROR_CHECK(esp_netif_init());
/* Initialize the event loop */
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_event_group = xEventGroupCreate();
/* Register our event handler for Wi-Fi, IP and Provisioning related events */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_PROV_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL));
/* Initialize Wi-Fi including netif with default config */
esp_netif_create_default_wifi_sta();
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP
esp_netif_create_default_wifi_ap();
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Configuration for the provisioning manager */
wifi_prov_mgr_config_t config = {
/* What is the Provisioning Scheme that we want ?
* wifi_prov_scheme_softap or wifi_prov_scheme_ble */
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_BLE
.scheme = wifi_prov_scheme_ble,
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_BLE */
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP
.scheme = wifi_prov_scheme_softap,
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP */
/* Any default scheme specific event handler that you would
* like to choose. Since our example application requires
* neither BT nor BLE, we can choose to release the associated
* memory once provisioning is complete, or not needed
* (in case when device is already provisioned). Choosing
* appropriate scheme specific event handler allows the manager
* to take care of this automatically. This can be set to
* WIFI_PROV_EVENT_HANDLER_NONE when using wifi_prov_scheme_softap*/
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_BLE
.scheme_event_handler = WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_BLE */
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP
.scheme_event_handler = WIFI_PROV_EVENT_HANDLER_NONE
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_SOFTAP */
};
/* Initialize provisioning manager with the
* configuration parameters set above */
ESP_ERROR_CHECK(wifi_prov_mgr_init(config));
bool provisioned = false;
/* Let's find out if the device is provisioned */
ESP_ERROR_CHECK(wifi_prov_mgr_is_provisioned(&provisioned));
/* If device is not yet provisioned start provisioning service */
if (!provisioned) {
ESP_LOGI(TAG, "Starting provisioning");
/* What is the Device Service Name that we want
* This translates to :
* - Wi-Fi SSID when scheme is wifi_prov_scheme_softap
* - device name when scheme is wifi_prov_scheme_ble
*/
char service_name[12];
get_device_service_name(service_name, sizeof(service_name));
/* What is the security level that we want (0 or 1):
* - WIFI_PROV_SECURITY_0 is simply plain text communication.
* - WIFI_PROV_SECURITY_1 is secure communication which consists of secure handshake
* using X25519 key exchange and proof of possession (pop) and AES-CTR
* for encryption/decryption of messages.
*/
wifi_prov_security_t security = WIFI_PROV_SECURITY_1;
/* Do we want a proof-of-possession (ignored if Security 0 is selected):
* - this should be a string with length > 0
* - NULL if not used
*/
const char *pop = "abcd1234";
/* What is the service key (could be NULL)
* This translates to :
* - Wi-Fi password when scheme is wifi_prov_scheme_softap
* - simply ignored when scheme is wifi_prov_scheme_ble
*/
const char *service_key = NULL;
#ifdef CONFIG_EXAMPLE_PROV_TRANSPORT_BLE
/* This step is only useful when scheme is wifi_prov_scheme_ble. This will
* set a custom 128 bit UUID which will be included in the BLE advertisement
* and will correspond to the primary GATT service that provides provisioning
* endpoints as GATT characteristics. Each GATT characteristic will be
* formed using the primary service UUID as base, with different auto assigned
* 12th and 13th bytes (assume counting starts from 0th byte). The client side
* applications must identify the endpoints by reading the User Characteristic
* Description descriptor (0x2901) for each characteristic, which contains the
* endpoint name of the characteristic */
uint8_t custom_service_uuid[] = {
/* LSB <---------------------------------------
* ---------------------------------------> MSB */
0xb4, 0xdf, 0x5a, 0x1c, 0x3f, 0x6b, 0xf4, 0xbf,
0xea, 0x4a, 0x82, 0x03, 0x04, 0x90, 0x1a, 0x02,
};
wifi_prov_scheme_ble_set_service_uuid(custom_service_uuid);
#endif /* CONFIG_EXAMPLE_PROV_TRANSPORT_BLE */
/* An optional endpoint that applications can create if they expect to
* get some additional custom data during provisioning workflow.
* The endpoint name can be anything of your choice.
* This call must be made before starting the provisioning.
*/
wifi_prov_mgr_endpoint_create("custom-data");
/* Start provisioning service */
ESP_ERROR_CHECK(wifi_prov_mgr_start_provisioning(security, pop, service_name, service_key));
/* The handler for the optional endpoint created above.
* This call must be made after starting the provisioning, and only if the endpoint
* has already been created above.
*/
wifi_prov_mgr_endpoint_register("custom-data", custom_prov_data_handler, NULL);
/* Uncomment the following to wait for the provisioning to finish and then release
* the resources of the manager. Since in this case de-initialization is triggered
* by the default event loop handler, we don't need to call the following */
// wifi_prov_mgr_wait();
// wifi_prov_mgr_deinit();
} else {
ESP_LOGI(TAG, "Already provisioned, starting Wi-Fi STA");
/* We don't need the manager as device is already provisioned,
* so let's release it's resources */
wifi_prov_mgr_deinit();
/* Start Wi-Fi station */
wifi_init_sta();
}
/* Wait for Wi-Fi connection */
xEventGroupWaitBits(wifi_event_group, WIFI_CONNECTED_EVENT, false, true, portMAX_DELAY);
/* Start main application now */
while (1) {
ESP_LOGI(TAG, "Hello World!");
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}

View File

@ -0,0 +1,8 @@
#
# Main component makefile.
#
# This Makefile can be left empty. By default, it will take the sources in the
# src/ directory, compile them and link them into lib(subdirectory_name).a
# in the build directory. This behaviour is entirely configurable,
# please read the ESP-IDF documents if you need to do this.
#

View File

@ -0,0 +1,5 @@
# Name, Type, SubType, Offset, Size, Flags
# Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1200000,
1 # Name, Type, SubType, Offset, Size, Flags
2 # Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
3 nvs, data, nvs, 0x9000, 0x6000,
4 phy_init, data, phy, 0xf000, 0x1000,
5 factory, app, factory, 0x10000, 1200000,

View File

@ -0,0 +1,11 @@
# Override some defaults so BT stack is enabled and
CONFIG_BT_ENABLED=y
CONFIG_BTDM_CTRL_MODE_BLE_ONLY=y
CONFIG_BTDM_CTRL_MODE_BR_EDR_ONLY=n
CONFIG_BTDM_CTRL_MODE_BTDM=n
CONFIG_BT_NIMBLE_ENABLED=y
## For Bluedroid as binary is larger than default size
CONFIG_PARTITION_TABLE_CUSTOM=y
CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions.csv"
CONFIG_PARTITION_TABLE_FILENAME="partitions.csv"

View File

@ -0,0 +1,118 @@
#!/usr/bin/env python
#
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import re
import os
import time
import ttfw_idf
import esp_prov
# Have esp_prov throw exception
esp_prov.config_throw_except = True
@ttfw_idf.idf_example_test(env_tag="Example_WIFI_BT")
def test_examples_wifi_prov_mgr(env, extra_data):
# Acquire DUT
dut1 = env.get_dut("wifi_prov_mgr", "examples/provisioning/wifi_prov_mgr", dut_class=ttfw_idf.ESP32DUT)
# Get binary file
binary_file = os.path.join(dut1.app.binary_path, "wifi_prov_mgr.bin")
bin_size = os.path.getsize(binary_file)
ttfw_idf.log_performance("wifi_prov_mgr_bin_size", "{}KB".format(bin_size // 1024))
ttfw_idf.check_performance("wifi_prov_mgr_bin_size", bin_size // 1024, dut1.TARGET)
# Upload binary and start testing
dut1.start_app()
# Check if BT memory is released before provisioning starts
dut1.expect("wifi_prov_scheme_ble: BT memory released", timeout=60)
# Parse BLE devname
devname = dut1.expect(re.compile(r"Provisioning started with service name : (PROV_\S\S\S\S\S\S)"), timeout=30)[0]
print("BLE Device Alias for DUT :", devname)
print("Starting Provisioning")
verbose = False
protover = "v1.1"
secver = 1
pop = "abcd1234"
provmode = "ble"
ap_ssid = "myssid"
ap_password = "mypassword"
print("Getting security")
security = esp_prov.get_security(secver, pop, verbose)
if security is None:
raise RuntimeError("Failed to get security")
print("Getting transport")
transport = esp_prov.get_transport(provmode, devname)
if transport is None:
raise RuntimeError("Failed to get transport")
print("Verifying protocol version")
if not esp_prov.version_match(transport, protover):
raise RuntimeError("Mismatch in protocol version")
print("Verifying scan list capability")
if not esp_prov.has_capability(transport, 'wifi_scan'):
raise RuntimeError("Capability not present")
print("Starting Session")
if not esp_prov.establish_session(transport, security):
raise RuntimeError("Failed to start session")
print("Sending Custom Data")
if not esp_prov.custom_data(transport, security, "My Custom Data"):
raise RuntimeError("Failed to send custom data")
print("Sending Wifi credential to DUT")
if not esp_prov.send_wifi_config(transport, security, ap_ssid, ap_password):
raise RuntimeError("Failed to send Wi-Fi config")
print("Applying config")
if not esp_prov.apply_wifi_config(transport, security):
raise RuntimeError("Failed to send apply config")
success = False
retry = 0
while True:
time.sleep(5)
print("Wi-Fi connection state")
ret = esp_prov.get_wifi_config(transport, security)
if (ret == 1):
continue
elif (ret == 0):
print("Provisioning was successful")
success = True
elif (ret == 3 and retry < 3):
retry = retry + 1
print("Connection failed.. retry again...: ", ret)
continue
break
if not success:
raise RuntimeError("Provisioning failed")
# Check if BTDM memory is released after provisioning finishes
dut1.expect("wifi_prov_scheme_ble: BTDM memory released", timeout=30)
if __name__ == '__main__':
test_examples_wifi_prov_mgr()