mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-20 05:42:04 +08:00
64 lines
1.8 KiB
Python
64 lines
1.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from torch.autograd import Variable
|
|
|
|
|
|
# Hyper Parameters
|
|
input_size = 1
|
|
output_size = 1
|
|
num_epochs = 60
|
|
learning_rate = 0.001
|
|
|
|
# Toy Dataset
|
|
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
|
|
[9.779], [6.182], [7.59], [2.167], [7.042],
|
|
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
|
|
|
|
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
|
|
[3.366], [2.596], [2.53], [1.221], [2.827],
|
|
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
|
|
|
|
# Linear Regression Model
|
|
class LinearRegression(nn.Module):
|
|
def __init__(self, input_size, output_size):
|
|
super(LinearRegression, self).__init__()
|
|
self.linear = nn.Linear(input_size, output_size)
|
|
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return out
|
|
|
|
model = LinearRegression(input_size, output_size)
|
|
|
|
# Loss and Optimizer
|
|
criterion = nn.MSELoss()
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
|
|
|
# Train the Model
|
|
for epoch in range(num_epochs):
|
|
# Convert numpy array to torch Variable
|
|
inputs = Variable(torch.from_numpy(x_train))
|
|
targets = Variable(torch.from_numpy(y_train))
|
|
|
|
# Forward + Backward + Optimize
|
|
optimizer.zero_grad()
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, targets)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if (epoch+1) % 5 == 0:
|
|
print ('Epoch [%d/%d], Loss: %.4f'
|
|
%(epoch+1, num_epochs, loss.data[0]))
|
|
|
|
# Plot the graph
|
|
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
|
|
plt.plot(x_train, y_train, 'ro', label='Original data')
|
|
plt.plot(x_train, predicted, label='Fitted line')
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
# Save the Model
|
|
torch.save(model.state_dict(), 'model.pkl') |