Files
2017-03-11 15:14:56 +09:00

46 lines
1.4 KiB
Python

import torch
import os
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __len__(self):
return len(self.word2idx)
class Corpus(object):
def __init__(self, path='./data'):
self.dictionary = Dictionary()
self.train = os.path.join(path, 'train.txt')
self.test = os.path.join(path, 'test.txt')
def get_data(self, path, batch_size=20):
# Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
# Tokenize the file content
ids = torch.LongTensor(tokens)
token = 0
with open(path, 'r') as f:
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
num_batches = ids.size(0) // batch_size
ids = ids[:num_batches*batch_size]
return ids.view(batch_size, -1)