Files
2017-03-10 16:46:39 +09:00

91 lines
3.0 KiB
Python

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Hyper Parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# BiRNN Model (Many-to-One)
class BiRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiRNN, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers,
batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes) # 2 for bidirection
def forward(self, x):
# Set initial states
h0 = Variable(torch.zeros(num_layers*2, x.size(0), hidden_size)) # 2 for bidirection
c0 = Variable(torch.zeros(num_layers*2, x.size(0), hidden_size))
# Forward propagate RNN
out, _ = self.lstm(x, (h0, c0))
# Decode hidden state of last time step
out = self.fc(out[:, -1, :])
return out
rnn = BiRNN(input_size, hidden_size, num_layers, num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate)
# Train the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, sequence_length, input_size))
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = rnn(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, sequence_length, input_size))
outputs = rnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))