mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-24 01:48:26 +08:00
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torchvision.datasets as dsets
|
|
import torchvision.transforms as transforms
|
|
from torch.autograd import Variable
|
|
|
|
|
|
# Hyper Parameters
|
|
sequence_length = 28
|
|
input_size = 28
|
|
hidden_size = 128
|
|
num_layers = 2
|
|
num_classes = 10
|
|
batch_size = 100
|
|
num_epochs = 2
|
|
learning_rate = 0.01
|
|
|
|
# MNIST Dataset
|
|
train_dataset = dsets.MNIST(root='./data/',
|
|
train=True,
|
|
transform=transforms.ToTensor(),
|
|
download=True)
|
|
|
|
test_dataset = dsets.MNIST(root='./data/',
|
|
train=False,
|
|
transform=transforms.ToTensor())
|
|
|
|
# Data Loader (Input Pipeline)
|
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True)
|
|
|
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False)
|
|
|
|
# RNN Model (Many-to-One)
|
|
class RNN(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
|
super(RNN, self).__init__()
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size, num_classes)
|
|
|
|
def forward(self, x):
|
|
# Set initial states
|
|
h0 = Variable(torch.zeros(num_layers, x.size(0), hidden_size).cuda())
|
|
c0 = Variable(torch.zeros(num_layers, x.size(0), hidden_size).cuda())
|
|
|
|
# Forward propagate RNN
|
|
out, _ = self.lstm(x, (h0, c0))
|
|
|
|
# Decode hidden state of last time step
|
|
out = self.fc(out[:, -1, :])
|
|
return out
|
|
|
|
rnn = RNN(input_size, hidden_size, num_layers, num_classes)
|
|
rnn.cuda()
|
|
|
|
# Loss and Optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate)
|
|
|
|
# Train the Model
|
|
for epoch in range(num_epochs):
|
|
for i, (images, labels) in enumerate(train_loader):
|
|
images = Variable(images.view(-1, sequence_length, input_size)).cuda()
|
|
labels = Variable(labels).cuda()
|
|
|
|
# Forward + Backward + Optimize
|
|
optimizer.zero_grad()
|
|
outputs = rnn(images)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if (i+1) % 100 == 0:
|
|
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
|
|
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
|
|
|
# Test the Model
|
|
correct = 0
|
|
total = 0
|
|
for images, labels in test_loader:
|
|
images = Variable(images.view(-1, sequence_length, input_size)).cuda()
|
|
outputs = rnn(images)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted.cpu() == labels).sum()
|
|
|
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total)) |