Files
2017-03-10 16:46:39 +09:00

90 lines
2.9 KiB
Python

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Hyper Parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# RNN Model (Many-to-One)
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# Set initial states
h0 = Variable(torch.zeros(num_layers, x.size(0), hidden_size).cuda())
c0 = Variable(torch.zeros(num_layers, x.size(0), hidden_size).cuda())
# Forward propagate RNN
out, _ = self.lstm(x, (h0, c0))
# Decode hidden state of last time step
out = self.fc(out[:, -1, :])
return out
rnn = RNN(input_size, hidden_size, num_layers, num_classes)
rnn.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate)
# Train the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, sequence_length, input_size)).cuda()
labels = Variable(labels).cuda()
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = rnn(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, sequence_length, input_size)).cuda()
outputs = rnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted.cpu() == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))