mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-23 00:58:10 +08:00
90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torchvision.datasets as dsets
|
|
import torchvision.transforms as transforms
|
|
from torch.autograd import Variable
|
|
|
|
|
|
# Hyper Parameters
|
|
num_epochs = 5
|
|
batch_size = 100
|
|
learning_rate = 0.001
|
|
|
|
# MNIST Dataset
|
|
train_dataset = dsets.MNIST(root='./data/',
|
|
train=True,
|
|
transform=transforms.ToTensor(),
|
|
download=True)
|
|
|
|
test_dataset = dsets.MNIST(root='./data/',
|
|
train=False,
|
|
transform=transforms.ToTensor())
|
|
|
|
# Data Loader (Input Pipeline)
|
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True)
|
|
|
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False)
|
|
|
|
# CNN Model (2 conv layer)
|
|
class CNN(nn.Module):
|
|
def __init__(self):
|
|
super(CNN, self).__init__()
|
|
self.layer1 = nn.Sequential(
|
|
nn.Conv2d(1, 16, kernel_size=5, padding=2),
|
|
nn.BatchNorm2d(16),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2))
|
|
self.layer2 = nn.Sequential(
|
|
nn.Conv2d(16, 32, kernel_size=5, padding=2),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2))
|
|
self.fc = nn.Linear(7*7*32, 10)
|
|
|
|
def forward(self, x):
|
|
out = self.layer1(x)
|
|
out = self.layer2(out)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
cnn = CNN()
|
|
|
|
|
|
# Loss and Optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
|
|
|
|
# Train the Model
|
|
for epoch in range(num_epochs):
|
|
for i, (images, labels) in enumerate(train_loader):
|
|
images = Variable(images)
|
|
labels = Variable(labels)
|
|
|
|
# Forward + Backward + Optimize
|
|
optimizer.zero_grad()
|
|
outputs = cnn(images)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if (i+1) % 100 == 0:
|
|
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
|
|
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
|
|
|
# Test the Model
|
|
cnn.eval()
|
|
correct = 0
|
|
total = 0
|
|
for images, labels in test_loader:
|
|
images = Variable(images)
|
|
outputs = cnn(images)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum()
|
|
|
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total)) |