mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-19 12:37:31 +08:00
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torchvision.datasets as dsets
|
|
import torchvision.transforms as transforms
|
|
from torch.autograd import Variable
|
|
|
|
|
|
# Hyper Parameters
|
|
input_size = 784
|
|
num_classes = 10
|
|
num_epochs = 5
|
|
batch_size = 100
|
|
learning_rate = 0.001
|
|
|
|
# MNIST Dataset (Images and Labels)
|
|
train_dataset = dsets.MNIST(root='./data',
|
|
train=True,
|
|
transform=transforms.ToTensor(),
|
|
download=True)
|
|
|
|
test_dataset = dsets.MNIST(root='./data',
|
|
train=False,
|
|
transform=transforms.ToTensor())
|
|
|
|
# Dataset Loader (Input Pipline)
|
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True)
|
|
|
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False)
|
|
|
|
# Model
|
|
class LogisticRegression(nn.Module):
|
|
def __init__(self, input_size, num_classes):
|
|
super(LogisticRegression, self).__init__()
|
|
self.linear = nn.Linear(input_size, num_classes)
|
|
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return out
|
|
|
|
model = LogisticRegression(input_size, num_classes)
|
|
|
|
# Loss and Optimizer
|
|
# Softmax is internally computed.
|
|
# Set parameters to be updated.
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
|
|
|
# Training the Model
|
|
for epoch in range(num_epochs):
|
|
for i, (images, labels) in enumerate(train_loader):
|
|
images = Variable(images.view(-1, 28*28))
|
|
labels = Variable(labels)
|
|
|
|
# Forward + Backward + Optimize
|
|
optimizer.zero_grad()
|
|
outputs = model(images)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if (i+1) % 100 == 0:
|
|
print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
|
|
% (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
|
|
|
# Test the Model
|
|
correct = 0
|
|
total = 0
|
|
for images, labels in test_loader:
|
|
images = Variable(images.view(-1, 28*28))
|
|
outputs = model(images)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum()
|
|
|
|
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
|
|
|
# Save the Model
|
|
torch.save(model.state_dict(), 'model.pkl') |