import torch import torch.nn as nn import torchvision.models as models import torch.nn.utils.rnn as rnn_utils from torch.autograd import Variable class EncoderCNN(nn.Module): def __init__(self, embed_size): """Load pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() self.resnet = models.resnet152(pretrained=True) self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size) for param in self.resnet.parameters(): param.requires_grad = False def forward(self, images): """Extract image feature vectors.""" features = self.resnet(images) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): """Set hyper-parameters and build layers.""" super(DecoderRNN, self).__init__() self.embed_size = embed_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers) self.linear = nn.Linear(hidden_size, vocab_size) def init_weights(self): pass def forward(self, features, captions, lengths): """Decode image feature vectors and generate caption.""" embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1), embeddings), 1) packed = rnn_utils.pack_padded_sequence(embeddings, lengths, batch_first=True) # lengths is ok hiddens, _ = self.lstm(packed) outputs = self.linear(hiddens[0]) return outputs def sample(self, feature, state): """Sample a caption for given a image feature.""" # (batch_size, seq_length, embed_size) # features: (1, 128) sampled_ids = [] input = feature.unsqueeze(1) for i in range(20): hidden, state = self.lstm(input, state) # (1, 1, 512) output = self.linear(hidden.view(-1, self.hidden_size)) # (1, 10000) predicted = output.max(1)[1] sampled_ids.append(predicted) input = self.embed(predicted) return sampled_ids