# Implementation of https://arxiv.org/pdf/1512.03385.pdf. # See section 4.2 for model architecture on CIFAR-10. # Some part of the code was referenced below. # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable # Image Preprocessing transform = transforms.Compose([ transforms.Scale(40), transforms.RandomHorizontalFlip(), transforms.RandomCrop(32), transforms.ToTensor()]) # CIFAR-10 Dataset train_dataset = dsets.CIFAR10(root='./data/', train=True, transform=transform, download=True) test_dataset = dsets.CIFAR10(root='./data/', train=False, transform=transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 3x3 Convolution def conv3x3(in_channels, out_channels, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) # Residual Block class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = conv3x3(in_channels, out_channels, stride) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(out_channels, out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample: residual = self.downsample(x) out += residual out = self.relu(out) return out # ResNet Module class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 16 self.conv = conv3x3(3, 16) self.bn = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self.make_layer(block, 16, layers[0]) self.layer2 = self.make_layer(block, 32, layers[0], 2) self.layer3 = self.make_layer(block, 64, layers[1], 2) self.avg_pool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_classes) def make_layer(self, block, out_channels, blocks, stride=1): downsample = None if (stride != 1) or (self.in_channels != out_channels): downsample = nn.Sequential( conv3x3(self.in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels)) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels for i in range(1, blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = self.conv(x) out = self.bn(out) out = self.relu(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out resnet = ResNet(ResidualBlock, [2, 2, 2, 2]) # Loss and Optimizer criterion = nn.CrossEntropyLoss() lr = 0.001 optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) # Training for epoch in range(80): for i, (images, labels) in enumerate(train_loader): images = Variable(images) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = resnet(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0])) # Decaying Learning Rate if (epoch+1) % 20 == 0: lr /= 3 optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) # Test correct = 0 total = 0 for images, labels in test_loader: images = Variable(images) outputs = resnet(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the model on the test images: %d %%' % (100 * correct / total)) # Save the Model torch.save(resnet.state_dict(), 'resnet.pkl')