import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable # Hyper Parameters input_size = 784 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.001 # MNIST Dataset (Images and Labels) train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # Dataset Loader (Input Pipline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Model class LogisticRegression(nn.Module): def __init__(self, input_size, num_classes): super(LogisticRegression, self).__init__() self.linear = nn.Linear(input_size, num_classes) def forward(self, x): out = self.linear(x) return out model = LogisticRegression(input_size, num_classes) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Training the Model for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = Variable(images.view(-1, 28*28)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0])) # Test the Model correct = 0 total = 0 for images, labels in test_loader: images = Variable(images.view(-1, 28*28)) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total)) # Save the Model torch.save(model.state_dict(), 'model.pkl')