# TensorBoard in PyTorch In this tutorial, we implement a MNIST classifier using a simple neural network and visualize the training process using [TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard). In training phase, we plot the loss and accuracy functions through `scalar_summary` and visualize the training images through `image_summary`. In addition, we visualize the weight and gradient values of the parameters of the neural network using `histogram_summary`. PyTorch code for handling these summary functions can be found [here](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/04-utils/tensorboard/main.py#L81-L97). ![alt text](gif/tensorboard.gif)
## Usage #### 1. Install the dependencies ```bash $ pip install -r requirements.txt ``` #### 2. Train the model ```bash $ python main.py ``` #### 3. Open the TensorBoard To run the TensorBoard, open a new terminal and run the command below. Then, open http://localhost:6006/ on your web browser. ```bash $ tensorboard --logdir='./logs' --port=6006 ```