import argparse import torch import torch.nn as nn import numpy as np import os import pickle from data_loader import get_loader from build_vocab import Vocabulary from model import EncoderCNN, DecoderRNN from torch.nn.utils.rnn import pack_padded_sequence from torchvision import transforms # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def main(args): # Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing, normalization for the pretrained resnet transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size).to(device) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) # Train the models total_step = len(data_loader) for epoch in range(args.num_epochs): for i, (images, captions, lengths) in enumerate(data_loader): # Set mini-batch dataset images = images.to(device) captions = captions.to(device) targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # Forward, backward and optimize features = encoder(images) outputs = decoder(features, captions, lengths) loss = criterion(outputs, targets) decoder.zero_grad() encoder.zero_grad() loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}' .format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item()))) # Save the model checkpoints if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join( args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join( args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='models/' , help='path for saving trained models') parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images') parser.add_argument('--vocab_path', type=str, default='data/vocab.pkl', help='path for vocabulary wrapper') parser.add_argument('--image_dir', type=str, default='data/resized2014', help='directory for resized images') parser.add_argument('--caption_path', type=str, default='data/annotations/captions_train2014.json', help='path for train annotation json file') parser.add_argument('--log_step', type=int , default=10, help='step size for prining log info') parser.add_argument('--save_step', type=int , default=1000, help='step size for saving trained models') # Model parameters parser.add_argument('--embed_size', type=int , default=256, help='dimension of word embedding vectors') parser.add_argument('--hidden_size', type=int , default=512, help='dimension of lstm hidden states') parser.add_argument('--num_layers', type=int , default=1, help='number of layers in lstm') parser.add_argument('--num_epochs', type=int, default=5) parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--num_workers', type=int, default=2) parser.add_argument('--learning_rate', type=float, default=0.001) args = parser.parse_args() print(args) main(args)