mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 17:44:12 +08:00
name changed: gan to dcgan
This commit is contained in:
@ -0,0 +1,134 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn
|
||||
import torchvision.datasets as dsets
|
||||
import torchvision.transforms as transforms
|
||||
from torch.autograd import Variable
|
||||
|
||||
# Image Preprocessing
|
||||
transform = transforms.Compose([
|
||||
transforms.Scale(36),
|
||||
transforms.RandomCrop(32),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
|
||||
# CIFAR-10 Dataset
|
||||
train_dataset = dsets.CIFAR10(root='../data/',
|
||||
train=True,
|
||||
transform=transform,
|
||||
download=True)
|
||||
|
||||
# Data Loader (Input Pipeline)
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=100,
|
||||
shuffle=True)
|
||||
|
||||
# 4x4 Convolution
|
||||
def conv4x4(in_channels, out_channels, stride):
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
|
||||
stride=stride, padding=1, bias=False)
|
||||
|
||||
# Discriminator Model
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self):
|
||||
super(Discriminator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
conv4x4(3, 16, 2),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv4x4(16, 32, 2),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv4x4(32, 64, 2),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv2d(64, 1, kernel_size=4),
|
||||
nn.Sigmoid())
|
||||
|
||||
def forward(self, x):
|
||||
out = self.model(x)
|
||||
out = out.view(out.size(0), -1)
|
||||
return out
|
||||
|
||||
# 4x4 Transpose convolution
|
||||
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
|
||||
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
|
||||
stride=stride, padding=padding, bias=bias)
|
||||
|
||||
# Generator Model
|
||||
class Generator(nn.Module):
|
||||
def __init__(self):
|
||||
super(Generator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
conv_transpose4x4(128, 64, padding=0),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(64, 32, 2),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(32, 16, 2),
|
||||
nn.BatchNorm2d(16),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(16, 3, 2, bias=True),
|
||||
nn.Tanh())
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), 128, 1, 1)
|
||||
out = self.model(x)
|
||||
return out
|
||||
|
||||
discriminator = Discriminator()
|
||||
generator = Generator()
|
||||
discriminator.cuda()
|
||||
generator.cuda()
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.BCELoss()
|
||||
lr = 0.002
|
||||
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
|
||||
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
|
||||
|
||||
# Training
|
||||
for epoch in range(50):
|
||||
for i, (images, _) in enumerate(train_loader):
|
||||
images = Variable(images.cuda())
|
||||
real_labels = Variable(torch.ones(images.size(0))).cuda()
|
||||
fake_labels = Variable(torch.zeros(images.size(0))).cuda()
|
||||
|
||||
# Train the discriminator
|
||||
discriminator.zero_grad()
|
||||
outputs = discriminator(images)
|
||||
real_loss = criterion(outputs, real_labels)
|
||||
real_score = outputs
|
||||
|
||||
noise = Variable(torch.randn(images.size(0), 128)).cuda()
|
||||
fake_images = generator(noise)
|
||||
outputs = discriminator(fake_images)
|
||||
fake_loss = criterion(outputs, fake_labels)
|
||||
fake_score = outputs
|
||||
|
||||
d_loss = real_loss + fake_loss
|
||||
d_loss.backward()
|
||||
d_optimizer.step()
|
||||
|
||||
# Train the generator
|
||||
generator.zero_grad()
|
||||
noise = Variable(torch.randn(images.size(0), 128)).cuda()
|
||||
fake_images = generator(noise)
|
||||
outputs = discriminator(fake_images)
|
||||
g_loss = criterion(outputs, real_labels)
|
||||
g_loss.backward()
|
||||
g_optimizer.step()
|
||||
|
||||
if (i+1) % 100 == 0:
|
||||
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
|
||||
'D(x): %.2f, D(G(z)): %.2f'
|
||||
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
|
||||
real_score.cpu().data.mean(), fake_score.cpu().data.mean()))
|
||||
|
||||
# Save the sampled images
|
||||
torchvision.utils.save_image(fake_images.data,
|
||||
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
|
||||
|
||||
# Save the Models
|
||||
torch.save(generator.state_dict(), './generator.pkl')
|
||||
torch.save(discriminator.state_dict(), './discriminator.pkl')
|
@ -0,0 +1,134 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn
|
||||
import torchvision.datasets as dsets
|
||||
import torchvision.transforms as transforms
|
||||
from torch.autograd import Variable
|
||||
|
||||
# Image Preprocessing
|
||||
transform = transforms.Compose([
|
||||
transforms.Scale(36),
|
||||
transforms.RandomCrop(32),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
|
||||
# CIFAR-10 Dataset
|
||||
train_dataset = dsets.CIFAR10(root='../data/',
|
||||
train=True,
|
||||
transform=transform,
|
||||
download=True)
|
||||
|
||||
# Data Loader (Input Pipeline)
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=100,
|
||||
shuffle=True)
|
||||
|
||||
# 4x4 Convolution
|
||||
def conv4x4(in_channels, out_channels, stride):
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
|
||||
stride=stride, padding=1, bias=False)
|
||||
|
||||
# Discriminator Model
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self):
|
||||
super(Discriminator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
conv4x4(3, 16, 2),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv4x4(16, 32, 2),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
conv4x4(32, 64, 2),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv2d(64, 1, kernel_size=4),
|
||||
nn.Sigmoid())
|
||||
|
||||
def forward(self, x):
|
||||
out = self.model(x)
|
||||
out = out.view(out.size(0), -1)
|
||||
return out
|
||||
|
||||
# 4x4 Transpose convolution
|
||||
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
|
||||
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
|
||||
stride=stride, padding=padding, bias=bias)
|
||||
|
||||
# Generator Model
|
||||
class Generator(nn.Module):
|
||||
def __init__(self):
|
||||
super(Generator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
conv_transpose4x4(128, 64, padding=0),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(64, 32, 2),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(32, 16, 2),
|
||||
nn.BatchNorm2d(16),
|
||||
nn.ReLU(inplace=True),
|
||||
conv_transpose4x4(16, 3, 2, bias=True),
|
||||
nn.Tanh())
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), 128, 1, 1)
|
||||
out = self.model(x)
|
||||
return out
|
||||
|
||||
discriminator = Discriminator()
|
||||
generator = Generator()
|
||||
|
||||
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.BCELoss()
|
||||
lr = 0.0002
|
||||
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
|
||||
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
|
||||
|
||||
# Training
|
||||
for epoch in range(50):
|
||||
for i, (images, _) in enumerate(train_loader):
|
||||
images = Variable(images)
|
||||
real_labels = Variable(torch.ones(images.size(0)))
|
||||
fake_labels = Variable(torch.zeros(images.size(0)))
|
||||
|
||||
# Train the discriminator
|
||||
discriminator.zero_grad()
|
||||
outputs = discriminator(images)
|
||||
real_loss = criterion(outputs, real_labels)
|
||||
real_score = outputs
|
||||
|
||||
noise = Variable(torch.randn(images.size(0), 128))
|
||||
fake_images = generator(noise)
|
||||
outputs = discriminator(fake_images)
|
||||
fake_loss = criterion(outputs, fake_labels)
|
||||
fake_score = outputs
|
||||
|
||||
d_loss = real_loss + fake_loss
|
||||
d_loss.backward()
|
||||
d_optimizer.step()
|
||||
|
||||
# Train the generator
|
||||
generator.zero_grad()
|
||||
noise = Variable(torch.randn(images.size(0), 128))
|
||||
fake_images = generator(noise)
|
||||
outputs = discriminator(fake_images)
|
||||
g_loss = criterion(outputs, real_labels)
|
||||
g_loss.backward()
|
||||
g_optimizer.step()
|
||||
|
||||
if (i+1) % 100 == 0:
|
||||
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
|
||||
'D(x): %.2f, D(G(z)): %.2f'
|
||||
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
|
||||
real_score.data.mean(), fake_score.data.mean()))
|
||||
|
||||
# Save the sampled images
|
||||
torchvision.utils.save_image(fake_images.data,
|
||||
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
|
||||
|
||||
# Save the Models
|
||||
torch.save(generator.state_dict(), './generator.pkl')
|
||||
torch.save(discriminator.state_dict(), './discriminator.pkl')
|
Reference in New Issue
Block a user