name changed: gan to dcgan

This commit is contained in:
yunjey
2017-03-26 17:42:22 +09:00
parent 8c4dd99de4
commit f3868f4fff
2 changed files with 268 additions and 0 deletions

View File

@ -0,0 +1,134 @@
import torch
import torchvision
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Image Preprocessing
transform = transforms.Compose([
transforms.Scale(36),
transforms.RandomCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
# 4x4 Convolution
def conv4x4(in_channels, out_channels, stride):
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=1, bias=False)
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
conv4x4(3, 16, 2),
nn.LeakyReLU(0.2, inplace=True),
conv4x4(16, 32, 2),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
conv4x4(32, 64, 2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 1, kernel_size=4),
nn.Sigmoid())
def forward(self, x):
out = self.model(x)
out = out.view(out.size(0), -1)
return out
# 4x4 Transpose convolution
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=padding, bias=bias)
# Generator Model
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
conv_transpose4x4(128, 64, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv_transpose4x4(64, 32, 2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
conv_transpose4x4(32, 16, 2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
conv_transpose4x4(16, 3, 2, bias=True),
nn.Tanh())
def forward(self, x):
x = x.view(x.size(0), 128, 1, 1)
out = self.model(x)
return out
discriminator = Discriminator()
generator = Generator()
discriminator.cuda()
generator.cuda()
# Loss and Optimizer
criterion = nn.BCELoss()
lr = 0.002
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
# Training
for epoch in range(50):
for i, (images, _) in enumerate(train_loader):
images = Variable(images.cuda())
real_labels = Variable(torch.ones(images.size(0))).cuda()
fake_labels = Variable(torch.zeros(images.size(0))).cuda()
# Train the discriminator
discriminator.zero_grad()
outputs = discriminator(images)
real_loss = criterion(outputs, real_labels)
real_score = outputs
noise = Variable(torch.randn(images.size(0), 128)).cuda()
fake_images = generator(noise)
outputs = discriminator(fake_images)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()
# Train the generator
generator.zero_grad()
noise = Variable(torch.randn(images.size(0), 128)).cuda()
fake_images = generator(noise)
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
'D(x): %.2f, D(G(z)): %.2f'
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
real_score.cpu().data.mean(), fake_score.cpu().data.mean()))
# Save the sampled images
torchvision.utils.save_image(fake_images.data,
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')

View File

@ -0,0 +1,134 @@
import torch
import torchvision
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Image Preprocessing
transform = transforms.Compose([
transforms.Scale(36),
transforms.RandomCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
# 4x4 Convolution
def conv4x4(in_channels, out_channels, stride):
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=1, bias=False)
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
conv4x4(3, 16, 2),
nn.LeakyReLU(0.2, inplace=True),
conv4x4(16, 32, 2),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
conv4x4(32, 64, 2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 1, kernel_size=4),
nn.Sigmoid())
def forward(self, x):
out = self.model(x)
out = out.view(out.size(0), -1)
return out
# 4x4 Transpose convolution
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=padding, bias=bias)
# Generator Model
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
conv_transpose4x4(128, 64, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv_transpose4x4(64, 32, 2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
conv_transpose4x4(32, 16, 2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
conv_transpose4x4(16, 3, 2, bias=True),
nn.Tanh())
def forward(self, x):
x = x.view(x.size(0), 128, 1, 1)
out = self.model(x)
return out
discriminator = Discriminator()
generator = Generator()
# Loss and Optimizer
criterion = nn.BCELoss()
lr = 0.0002
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
# Training
for epoch in range(50):
for i, (images, _) in enumerate(train_loader):
images = Variable(images)
real_labels = Variable(torch.ones(images.size(0)))
fake_labels = Variable(torch.zeros(images.size(0)))
# Train the discriminator
discriminator.zero_grad()
outputs = discriminator(images)
real_loss = criterion(outputs, real_labels)
real_score = outputs
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()
# Train the generator
generator.zero_grad()
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
'D(x): %.2f, D(G(z)): %.2f'
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
real_score.data.mean(), fake_score.data.mean()))
# Save the sampled images
torchvision.utils.save_image(fake_images.data,
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')