diff --git a/tutorials/03-advanced/variational_auto_encoder/README.md b/tutorials/03-advanced/variational_auto_encoder/README.md index df7ded7..927ed13 100644 --- a/tutorials/03-advanced/variational_auto_encoder/README.md +++ b/tutorials/03-advanced/variational_auto_encoder/README.md @@ -1,4 +1,4 @@ -## Variational Auto-Encoder +# Variational Auto-Encoder [Variational Auto-Encoder(VAE)](https://arxiv.org/abs/1312.6114) is one of the generative model. From a neural network perspective, the only difference between the VAE and the Auto-Encoder(AE) is that the latent vector z in VAE is stochastically sampled. This solves the problem that the AE learns identity mapping and can not have meaningful representations in latent space. In fact, the VAE uses [reparameterization trick](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/03-advanced/variational_auto_encoder/main.py#L40-L44) to enable back propagation without sampling z directly from the mean and variance. #### VAE loss @@ -21,4 +21,4 @@ $ python main.py ## Results Real image | Reconstruced image :-------------------------:|:-------------------------: -![alt text](png/real.png) | ![alt text](png/reconst.png) \ No newline at end of file +![alt text](png/real.png) | ![alt text](png/reconst.png)