mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-26 03:21:53 +08:00
model edited
This commit is contained in:
@ -1,7 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torchvision.models as models
|
import torchvision.models as models
|
||||||
import torch.nn.utils.rnn as rnn_utils
|
from torch.nn.utils.rnn import pack_padded_sequence
|
||||||
from torch.autograd import Variable
|
from torch.autograd import Variable
|
||||||
|
|
||||||
|
|
||||||
@ -31,27 +31,22 @@ class DecoderRNN(nn.Module):
|
|||||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
|
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
|
||||||
self.linear = nn.Linear(hidden_size, vocab_size)
|
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||||
|
|
||||||
def init_weights(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def forward(self, features, captions, lengths):
|
def forward(self, features, captions, lengths):
|
||||||
"""Decode image feature vectors and generate caption."""
|
"""Decode image feature vectors and generate caption."""
|
||||||
embeddings = self.embed(captions)
|
embeddings = self.embed(captions)
|
||||||
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
|
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
|
||||||
packed = rnn_utils.pack_padded_sequence(embeddings, lengths, batch_first=True) # lengths is ok
|
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
|
||||||
hiddens, _ = self.lstm(packed)
|
hiddens, _ = self.lstm(packed)
|
||||||
outputs = self.linear(hiddens[0])
|
outputs = self.linear(hiddens[0])
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def sample(self, feature, state):
|
def sample(self, feature, state):
|
||||||
"""Sample a caption for given a image feature."""
|
"""Sample a caption for given a image feature."""
|
||||||
# (batch_size, seq_length, embed_size)
|
|
||||||
# features: (1, 128)
|
|
||||||
sampled_ids = []
|
sampled_ids = []
|
||||||
input = feature.unsqueeze(1)
|
input = feature.unsqueeze(1)
|
||||||
for i in range(20):
|
for i in range(20):
|
||||||
hidden, state = self.lstm(input, state) # (1, 1, 512)
|
hidden, state = self.lstm(input, state) # (1, 1, hidden_size)
|
||||||
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, 10000)
|
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size)
|
||||||
predicted = output.max(1)[1]
|
predicted = output.max(1)[1]
|
||||||
sampled_ids.append(predicted)
|
sampled_ids.append(predicted)
|
||||||
input = self.embed(predicted)
|
input = self.embed(predicted)
|
||||||
|
Reference in New Issue
Block a user