tutorial updated

This commit is contained in:
yunjey
2017-05-28 20:06:40 +09:00
parent c53c48809e
commit c548e2ae9f
71 changed files with 1102 additions and 1123 deletions

View File

@ -0,0 +1,165 @@
import torch
import torchvision
import torch.nn as nn
import numpy as np
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
#========================== Table of Contents ==========================#
# 1. Basic autograd example 1 (Line 21 to 36)
# 2. Basic autograd example 2 (Line 39 to 77)
# 3. Loading data from numpy (Line 80 to 83)
# 4. Implementing the input pipline (Line 86 to 113)
# 5. Input pipline for custom dataset (Line 116 to 138)
# 6. Using pretrained model (Line 141 to 155)
# 7. Save and load model (Line 158 to 165)
#======================= Basic autograd example 1 =======================#
# Create tensors.
x = Variable(torch.Tensor([1]), requires_grad=True)
w = Variable(torch.Tensor([2]), requires_grad=True)
b = Variable(torch.Tensor([3]), requires_grad=True)
# Build a computational graph.
y = w * x + b # y = 2 * x + 3
# Compute gradients.
y.backward()
# Print out the gradients.
print(x.grad) # x.grad = 2
print(w.grad) # w.grad = 1
print(b.grad) # b.grad = 1
#======================== Basic autograd example 2 =======================#
# Create tensors.
x = Variable(torch.randn(5, 3))
y = Variable(torch.randn(5, 2))
# Build a linear layer.
linear = nn.Linear(3, 2)
print ('w: ', linear.weight)
print ('b: ', linear.bias)
# Build Loss and Optimizer.
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)
# Forward propagation.
pred = linear(x)
# Compute loss.
loss = criterion(pred, y)
print('loss: ', loss.data[0])
# Backpropagation.
loss.backward()
# Print out the gradients.
print ('dL/dw: ', linear.weight.grad)
print ('dL/db: ', linear.bias.grad)
# 1-step Optimization (gradient descent).
optimizer.step()
# You can also do optimization at the low level as shown below.
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)
# Print out the loss after optimization.
pred = linear(x)
loss = criterion(pred, y)
print('loss after 1 step optimization: ', loss.data[0])
#======================== Loading data from numpy ========================#
a = np.array([[1,2], [3,4]])
b = torch.from_numpy(a) # convert numpy array to torch tensor
c = b.numpy() # convert torch tensor to numpy array
#===================== Implementing the input pipline =====================#
# Download and construct dataset.
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
# Select one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size())
print (label)
# Data Loader (this provides queue and thread in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True,
num_workers=2)
# When iteration starts, queue and thread start to load dataset from files.
data_iter = iter(train_loader)
# Mini-batch images and labels.
images, labels = data_iter.next()
# Actual usage of data loader is as below.
for images, labels in train_loader:
# Your training code will be written here
pass
#===================== Input pipline for custom dataset =====================#
# You should build custom dataset as below.
class CustomDataset(data.Dataset):
def __init__(self):
# TODO
# 1. Initialize file path or list of file names.
pass
def __getitem__(self, index):
# TODO
# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
# 2. Preprocess the data (e.g. torchvision.Transform).
# 3. Return a data pair (e.g. image and label).
pass
def __len__(self):
# You should change 0 to the total size of your dataset.
return 0
# Then, you can just use prebuilt torch's data loader.
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
batch_size=100,
shuffle=True,
num_workers=2)
#========================== Using pretrained model ==========================#
# Download and load pretrained resnet.
resnet = torchvision.models.resnet18(pretrained=True)
# If you want to finetune only top layer of the model.
for param in resnet.parameters():
param.requires_grad = False
# Replace top layer for finetuning.
resnet.fc = nn.Linear(resnet.fc.in_features, 100) # 100 is for example.
# For test.
images = Variable(torch.randn(10, 3, 256, 256))
outputs = resnet(images)
print (outputs.size()) # (10, 100)
#============================ Save and load the model ============================#
# Save and load the entire model.
torch.save(resnet, 'model.pkl')
model = torch.load('model.pkl')
# Save and load only the model parameters(recommended).
torch.save(resnet.state_dict(), 'params.pkl')
resnet.load_state_dict(torch.load('params.pkl'))