mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 17:44:12 +08:00
tutorial updated
This commit is contained in:
64
tutorials/01-basics/linear_regression/main.py
Normal file
64
tutorials/01-basics/linear_regression/main.py
Normal file
@ -0,0 +1,64 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
# Hyper Parameters
|
||||
input_size = 1
|
||||
output_size = 1
|
||||
num_epochs = 60
|
||||
learning_rate = 0.001
|
||||
|
||||
# Toy Dataset
|
||||
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
|
||||
[9.779], [6.182], [7.59], [2.167], [7.042],
|
||||
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
|
||||
|
||||
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
|
||||
[3.366], [2.596], [2.53], [1.221], [2.827],
|
||||
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
|
||||
|
||||
# Linear Regression Model
|
||||
class LinearRegression(nn.Module):
|
||||
def __init__(self, input_size, output_size):
|
||||
super(LinearRegression, self).__init__()
|
||||
self.linear = nn.Linear(input_size, output_size)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return out
|
||||
|
||||
model = LinearRegression(input_size, output_size)
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train the Model
|
||||
for epoch in range(num_epochs):
|
||||
# Convert numpy array to torch Variable
|
||||
inputs = Variable(torch.from_numpy(x_train))
|
||||
targets = Variable(torch.from_numpy(y_train))
|
||||
|
||||
# Forward + Backward + Optimize
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if (epoch+1) % 5 == 0:
|
||||
print ('Epoch [%d/%d], Loss: %.4f'
|
||||
%(epoch+1, num_epochs, loss.data[0]))
|
||||
|
||||
# Plot the graph
|
||||
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
|
||||
plt.plot(x_train, y_train, 'ro', label='Original data')
|
||||
plt.plot(x_train, predicted, label='Fitted line')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
# Save the Model
|
||||
torch.save(model.state_dict(), 'model.pkl')
|
Reference in New Issue
Block a user