mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 09:23:21 +08:00
[Fix]invalid URL
This commit is contained in:
@ -1,14 +1,14 @@
|
|||||||
# Implementation of https://arxiv.org/pdf/1512.03385.pdf/
|
# Implementation of https://arxiv.org/pdf/1512.03385.pdf
|
||||||
# See section 4.2 for model architecture on CIFAR-10.
|
# See section 4.2 for model architecture on CIFAR-10.
|
||||||
# Some part of the code was referenced below.
|
# Some part of the code was referenced below.
|
||||||
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
|
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torchvision.datasets as dsets
|
import torchvision.datasets as dsets
|
||||||
import torchvision.transforms as transforms
|
import torchvision.transforms as transforms
|
||||||
from torch.autograd import Variable
|
from torch.autograd import Variable
|
||||||
|
|
||||||
# Image Preprocessing
|
# Image Preprocessing
|
||||||
transform = transforms.Compose([
|
transform = transforms.Compose([
|
||||||
transforms.Scale(40),
|
transforms.Scale(40),
|
||||||
transforms.RandomHorizontalFlip(),
|
transforms.RandomHorizontalFlip(),
|
||||||
@ -17,26 +17,26 @@ transform = transforms.Compose([
|
|||||||
|
|
||||||
# CIFAR-10 Dataset
|
# CIFAR-10 Dataset
|
||||||
train_dataset = dsets.CIFAR10(root='./data/',
|
train_dataset = dsets.CIFAR10(root='./data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transform,
|
transform=transform,
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.CIFAR10(root='./data/',
|
test_dataset = dsets.CIFAR10(root='./data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
# Data Loader (Input Pipeline)
|
# Data Loader (Input Pipeline)
|
||||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||||
batch_size=100,
|
batch_size=100,
|
||||||
shuffle=True)
|
shuffle=True)
|
||||||
|
|
||||||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
||||||
batch_size=100,
|
batch_size=100,
|
||||||
shuffle=False)
|
shuffle=False)
|
||||||
|
|
||||||
# 3x3 Convolution
|
# 3x3 Convolution
|
||||||
def conv3x3(in_channels, out_channels, stride=1):
|
def conv3x3(in_channels, out_channels, stride=1):
|
||||||
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
|
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
|
||||||
stride=stride, padding=1, bias=False)
|
stride=stride, padding=1, bias=False)
|
||||||
|
|
||||||
# Residual Block
|
# Residual Block
|
||||||
@ -49,7 +49,7 @@ class ResidualBlock(nn.Module):
|
|||||||
self.conv2 = conv3x3(out_channels, out_channels)
|
self.conv2 = conv3x3(out_channels, out_channels)
|
||||||
self.bn2 = nn.BatchNorm2d(out_channels)
|
self.bn2 = nn.BatchNorm2d(out_channels)
|
||||||
self.downsample = downsample
|
self.downsample = downsample
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
residual = x
|
residual = x
|
||||||
out = self.conv1(x)
|
out = self.conv1(x)
|
||||||
@ -76,7 +76,7 @@ class ResNet(nn.Module):
|
|||||||
self.layer3 = self.make_layer(block, 64, layers[1], 2)
|
self.layer3 = self.make_layer(block, 64, layers[1], 2)
|
||||||
self.avg_pool = nn.AvgPool2d(8)
|
self.avg_pool = nn.AvgPool2d(8)
|
||||||
self.fc = nn.Linear(64, num_classes)
|
self.fc = nn.Linear(64, num_classes)
|
||||||
|
|
||||||
def make_layer(self, block, out_channels, blocks, stride=1):
|
def make_layer(self, block, out_channels, blocks, stride=1):
|
||||||
downsample = None
|
downsample = None
|
||||||
if (stride != 1) or (self.in_channels != out_channels):
|
if (stride != 1) or (self.in_channels != out_channels):
|
||||||
@ -89,7 +89,7 @@ class ResNet(nn.Module):
|
|||||||
for i in range(1, blocks):
|
for i in range(1, blocks):
|
||||||
layers.append(block(out_channels, out_channels))
|
layers.append(block(out_channels, out_channels))
|
||||||
return nn.Sequential(*layers)
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
out = self.conv(x)
|
out = self.conv(x)
|
||||||
out = self.bn(out)
|
out = self.bn(out)
|
||||||
@ -101,7 +101,7 @@ class ResNet(nn.Module):
|
|||||||
out = out.view(out.size(0), -1)
|
out = out.view(out.size(0), -1)
|
||||||
out = self.fc(out)
|
out = self.fc(out)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
resnet = ResNet(ResidualBlock, [3, 3, 3])
|
resnet = ResNet(ResidualBlock, [3, 3, 3])
|
||||||
resnet.cuda()
|
resnet.cuda()
|
||||||
|
|
||||||
@ -109,28 +109,28 @@ resnet.cuda()
|
|||||||
criterion = nn.CrossEntropyLoss()
|
criterion = nn.CrossEntropyLoss()
|
||||||
lr = 0.001
|
lr = 0.001
|
||||||
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
for epoch in range(80):
|
for epoch in range(80):
|
||||||
for i, (images, labels) in enumerate(train_loader):
|
for i, (images, labels) in enumerate(train_loader):
|
||||||
images = Variable(images.cuda())
|
images = Variable(images.cuda())
|
||||||
labels = Variable(labels.cuda())
|
labels = Variable(labels.cuda())
|
||||||
|
|
||||||
# Forward + Backward + Optimize
|
# Forward + Backward + Optimize
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
outputs = resnet(images)
|
outputs = resnet(images)
|
||||||
loss = criterion(outputs, labels)
|
loss = criterion(outputs, labels)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
if (i+1) % 100 == 0:
|
if (i+1) % 100 == 0:
|
||||||
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))
|
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))
|
||||||
|
|
||||||
# Decaying Learning Rate
|
# Decaying Learning Rate
|
||||||
if (epoch+1) % 20 == 0:
|
if (epoch+1) % 20 == 0:
|
||||||
lr /= 3
|
lr /= 3
|
||||||
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
||||||
|
|
||||||
# Test
|
# Test
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
@ -144,4 +144,4 @@ for images, labels in test_loader:
|
|||||||
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
# Save the Model
|
# Save the Model
|
||||||
torch.save(resnet.state_dict(), 'resnet.pkl')
|
torch.save(resnet.state_dict(), 'resnet.pkl')
|
||||||
|
Reference in New Issue
Block a user