From ae72623a08f304e9a2d82a00056321be3a147972 Mon Sep 17 00:00:00 2001 From: yunjey Date: Tue, 21 Mar 2017 20:05:51 +0900 Subject: [PATCH] Create README.md --- tutorials/09 - Image Captioning/README.md | 42 +++++++++++++++++++++++ 1 file changed, 42 insertions(+) create mode 100644 tutorials/09 - Image Captioning/README.md diff --git a/tutorials/09 - Image Captioning/README.md b/tutorials/09 - Image Captioning/README.md new file mode 100644 index 0000000..65938fb --- /dev/null +++ b/tutorials/09 - Image Captioning/README.md @@ -0,0 +1,42 @@ +## Usage + + +#### 1. Clone the repositories +```bash +$ git clone https://github.com/pdollar/coco.git +$ git clone https://github.com/yunjey/pytorch-tutorial.git +$ cd pytorch-tutorial/tutorials/09 - Image Captioning +``` + +#### 2. Download the dataset + +```bash +$ pip install -r requirements +$ chmod +x download.sh +$ ./donwload.sh +``` + +#### 3. Preprocessing + +```bash +$ python vocab.py +``` + +#### 4. Train the model + +```bash +$ python train.py +``` + +#### 5. Generate captions +If you want to generate captions from MSCOCO validation dataset, see [evaluate_model.ipynb](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/09%20-%20Image%20Captioning/evaluate_model.ipynb). Otherwise, if you want to generate captions from custom image file, run command as below. + +```bash +$ python sample.py --image=sample_image.jpg +``` + +
+ +## Pretrained model + +If you do not want to train the model yourself, you can use a pretrained model. I have provided the pretrained model as a zip file. You can download the file [here](https://www.dropbox.com/s/cngzozkk73imjdh/trained_model.zip?dl=0) and extract it to `model` directory.