modify the model

This commit is contained in:
yunjey
2017-03-13 14:35:34 +09:00
parent eadb0f9580
commit a500ce7396
3 changed files with 32 additions and 12 deletions

View File

@ -1,6 +1,6 @@
from data import get_loader
from vocab import Vocabulary
from models import EncoderCNN, DecoderRNN
from model import EncoderCNN, DecoderRNN
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
import torch
@ -10,10 +10,11 @@ import torchvision.transforms as T
import pickle
# Hyper Parameters
num_epochs = 5
batch_size = 100
embed_size = 128
num_epochs = 1
batch_size = 32
embed_size = 256
hidden_size = 512
crop_size = 224
num_layers = 1
learning_rate = 0.001
train_image_path = './data/train2014resized/'
@ -21,6 +22,7 @@ train_json_path = './data/annotations/captions_train2014.json'
# Image Preprocessing
transform = T.Compose([
T.RandomCrop(crop_size),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
@ -42,7 +44,8 @@ decoder.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
optimizer = torch.optim.Adam(params, lr=learning_rate)
# Train the Decoder
for epoch in range(num_epochs):
@ -63,7 +66,7 @@ for epoch in range(num_epochs):
if i % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
# Save the Model
torch.save(decoder, 'decoder.pkl')
torch.save(encoder, 'encoder.pkl')