modify the model

This commit is contained in:
yunjey
2017-03-13 14:35:34 +09:00
parent eadb0f9580
commit a500ce7396
3 changed files with 32 additions and 12 deletions

View File

@ -10,9 +10,15 @@ class EncoderCNN(nn.Module):
"""Load pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet152(pretrained=True)
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
# For efficient memory usage.
for param in self.resnet.parameters():
param.requires_grad = False
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
self.init_weights()
def init_weights(self):
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
self.resnet.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
@ -30,6 +36,11 @@ class DecoderRNN(nn.Module):
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.linear = nn.Linear(hidden_size, vocab_size)
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weigth.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generate caption."""

View File

@ -1,6 +1,7 @@
import os
import numpy as np
import torch
import torchvision.transforms as T
import pickle
import matplotlib.pyplot as plt
from PIL import Image
@ -8,6 +9,12 @@ from model import EncoderCNN, DecoderRNN
from vocab import Vocabulary
from torch.autograd import Variable
# Image processing
transform = T.Compose([
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# Hyper Parameters
embed_size = 128
hidden_size = 512
@ -18,11 +25,10 @@ with open('./data/vocab.pkl', 'rb') as f:
vocab = pickle.load(f)
# Load an image array
images = os.listdir('./data/val2014resized/')
image_path = './data/val2014resized/' + images[12]
with open(image_path, 'r+b') as f:
img = np.asarray(Image.open(f))
image = torch.from_numpy(img.transpose(2, 0, 1)).float().unsqueeze(0) / 255 - 0.5
images = os.listdir('./data/train2014resized/')
image_path = './data/train2014resized/' + images[12]
img = Image.open(image_path)
image = transform(img).unsqueeze(0)
# Load the trained models
encoder = torch.load('./encoder.pkl')

View File

@ -1,6 +1,6 @@
from data import get_loader
from vocab import Vocabulary
from models import EncoderCNN, DecoderRNN
from model import EncoderCNN, DecoderRNN
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
import torch
@ -10,10 +10,11 @@ import torchvision.transforms as T
import pickle
# Hyper Parameters
num_epochs = 5
batch_size = 100
embed_size = 128
num_epochs = 1
batch_size = 32
embed_size = 256
hidden_size = 512
crop_size = 224
num_layers = 1
learning_rate = 0.001
train_image_path = './data/train2014resized/'
@ -21,6 +22,7 @@ train_json_path = './data/annotations/captions_train2014.json'
# Image Preprocessing
transform = T.Compose([
T.RandomCrop(crop_size),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
@ -42,7 +44,8 @@ decoder.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
optimizer = torch.optim.Adam(params, lr=learning_rate)
# Train the Decoder
for epoch in range(num_epochs):
@ -63,7 +66,7 @@ for epoch in range(num_epochs):
if i % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
# Save the Model
torch.save(decoder, 'decoder.pkl')
torch.save(encoder, 'encoder.pkl')