mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 01:15:59 +08:00
modify the model
This commit is contained in:
@ -10,9 +10,15 @@ class EncoderCNN(nn.Module):
|
||||
"""Load pretrained ResNet-152 and replace top fc layer."""
|
||||
super(EncoderCNN, self).__init__()
|
||||
self.resnet = models.resnet152(pretrained=True)
|
||||
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
|
||||
# For efficient memory usage.
|
||||
for param in self.resnet.parameters():
|
||||
param.requires_grad = False
|
||||
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
|
||||
self.resnet.fc.bias.data.fill_(0)
|
||||
|
||||
def forward(self, images):
|
||||
"""Extract image feature vectors."""
|
||||
@ -30,6 +36,11 @@ class DecoderRNN(nn.Module):
|
||||
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
|
||||
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||
|
||||
def init_weights(self):
|
||||
self.embed.weight.data.uniform_(-0.1, 0.1)
|
||||
self.linear.weigth.data.uniform_(-0.1, 0.1)
|
||||
self.linear.bias.data.fill_(0)
|
||||
|
||||
def forward(self, features, captions, lengths):
|
||||
"""Decode image feature vectors and generate caption."""
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import pickle
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL import Image
|
||||
@ -8,6 +9,12 @@ from model import EncoderCNN, DecoderRNN
|
||||
from vocab import Vocabulary
|
||||
from torch.autograd import Variable
|
||||
|
||||
# Image processing
|
||||
transform = T.Compose([
|
||||
T.CenterCrop(224),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
|
||||
# Hyper Parameters
|
||||
embed_size = 128
|
||||
hidden_size = 512
|
||||
@ -18,11 +25,10 @@ with open('./data/vocab.pkl', 'rb') as f:
|
||||
vocab = pickle.load(f)
|
||||
|
||||
# Load an image array
|
||||
images = os.listdir('./data/val2014resized/')
|
||||
image_path = './data/val2014resized/' + images[12]
|
||||
with open(image_path, 'r+b') as f:
|
||||
img = np.asarray(Image.open(f))
|
||||
image = torch.from_numpy(img.transpose(2, 0, 1)).float().unsqueeze(0) / 255 - 0.5
|
||||
images = os.listdir('./data/train2014resized/')
|
||||
image_path = './data/train2014resized/' + images[12]
|
||||
img = Image.open(image_path)
|
||||
image = transform(img).unsqueeze(0)
|
||||
|
||||
# Load the trained models
|
||||
encoder = torch.load('./encoder.pkl')
|
||||
|
@ -1,6 +1,6 @@
|
||||
from data import get_loader
|
||||
from vocab import Vocabulary
|
||||
from models import EncoderCNN, DecoderRNN
|
||||
from model import EncoderCNN, DecoderRNN
|
||||
from torch.autograd import Variable
|
||||
from torch.nn.utils.rnn import pack_padded_sequence
|
||||
import torch
|
||||
@ -10,10 +10,11 @@ import torchvision.transforms as T
|
||||
import pickle
|
||||
|
||||
# Hyper Parameters
|
||||
num_epochs = 5
|
||||
batch_size = 100
|
||||
embed_size = 128
|
||||
num_epochs = 1
|
||||
batch_size = 32
|
||||
embed_size = 256
|
||||
hidden_size = 512
|
||||
crop_size = 224
|
||||
num_layers = 1
|
||||
learning_rate = 0.001
|
||||
train_image_path = './data/train2014resized/'
|
||||
@ -21,6 +22,7 @@ train_json_path = './data/annotations/captions_train2014.json'
|
||||
|
||||
# Image Preprocessing
|
||||
transform = T.Compose([
|
||||
T.RandomCrop(crop_size),
|
||||
T.RandomHorizontalFlip(),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
@ -42,7 +44,8 @@ decoder.cuda()
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
|
||||
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
|
||||
optimizer = torch.optim.Adam(params, lr=learning_rate)
|
||||
|
||||
# Train the Decoder
|
||||
for epoch in range(num_epochs):
|
||||
@ -63,7 +66,7 @@ for epoch in range(num_epochs):
|
||||
if i % 100 == 0:
|
||||
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
|
||||
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
|
||||
|
||||
|
||||
# Save the Model
|
||||
torch.save(decoder, 'decoder.pkl')
|
||||
torch.save(encoder, 'encoder.pkl')
|
Reference in New Issue
Block a user