mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-08 10:46:07 +08:00
Update tutorials for pytorch 0.4.0
This commit is contained in:
101
tutorials/03-advanced/variational_autoencoder/main.py
Normal file
101
tutorials/03-advanced/variational_autoencoder/main.py
Normal file
@ -0,0 +1,101 @@
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
from torchvision import transforms
|
||||
from torchvision.utils import save_image
|
||||
|
||||
|
||||
# Device configuration
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
# Create a directory if not exists
|
||||
sample_dir = 'samples'
|
||||
if not os.path.exists(sample_dir):
|
||||
os.makedirs(sample_dir)
|
||||
|
||||
# Hyper-parameters
|
||||
image_size = 784
|
||||
h_dim = 400
|
||||
z_dim = 20
|
||||
num_epochs = 15
|
||||
batch_size = 128
|
||||
learning_rate = 1e-3
|
||||
|
||||
# MNIST dataset
|
||||
dataset = torchvision.datasets.MNIST(root='../../data',
|
||||
train=True,
|
||||
transform=transforms.ToTensor(),
|
||||
download=True)
|
||||
|
||||
# Data loader
|
||||
data_loader = torch.utils.data.DataLoader(dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True)
|
||||
|
||||
|
||||
# VAE model
|
||||
class VAE(nn.Module):
|
||||
def __init__(self, image_size=784, h_dim=400, z_dim=20):
|
||||
super(VAE, self).__init__()
|
||||
self.fc1 = nn.Linear(image_size, h_dim)
|
||||
self.fc2 = nn.Linear(h_dim, z_dim)
|
||||
self.fc3 = nn.Linear(h_dim, z_dim)
|
||||
self.fc4 = nn.Linear(z_dim, h_dim)
|
||||
self.fc5 = nn.Linear(h_dim, image_size)
|
||||
|
||||
def encode(self, x):
|
||||
h = F.relu(self.fc1(x))
|
||||
return self.fc2(h), self.fc3(h)
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(log_var/2)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
def decode(self, z):
|
||||
h = F.relu(self.fc4(z))
|
||||
return F.sigmoid(self.fc5(h))
|
||||
|
||||
def forward(self, x):
|
||||
mu, log_var = self.encode(x)
|
||||
z = self.reparameterize(mu, log_var)
|
||||
x_reconst = self.decode(z)
|
||||
return x_reconst, mu, log_var
|
||||
|
||||
model = VAE().to(device)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Start training
|
||||
for epoch in range(num_epochs):
|
||||
for i, (x, _) in enumerate(data_loader):
|
||||
# Forward pass
|
||||
x = x.to(device).view(-1, image_size)
|
||||
x_reconst, mu, log_var = model(x)
|
||||
|
||||
# Compute reconstruction loss and kl divergence
|
||||
# For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43
|
||||
reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
|
||||
kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
|
||||
|
||||
# Backprop and optimize
|
||||
loss = reconst_loss + kl_div
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if (i+1) % 10 == 0:
|
||||
print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}"
|
||||
.format(epoch+1, num_epochs, i+1, len(data_loader), reconst_loss.item(), kl_div.item()))
|
||||
|
||||
with torch.no_grad():
|
||||
# Save the sampled images
|
||||
z = torch.randn(batch_size, z_dim).to(device)
|
||||
out = model.decode(z).view(-1, 1, 28, 28)
|
||||
save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1)))
|
||||
|
||||
# Save the reconstructed images
|
||||
out, _, _ = model(x)
|
||||
x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)
|
||||
save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch+1)))
|
Reference in New Issue
Block a user