mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-06 17:44:12 +08:00
Update tutorials for pytorch 0.4.0
This commit is contained in:
42068
tutorials/02-intermediate/language_model/data/train.txt
Normal file
42068
tutorials/02-intermediate/language_model/data/train.txt
Normal file
File diff suppressed because it is too large
Load Diff
46
tutorials/02-intermediate/language_model/data_utils.py
Normal file
46
tutorials/02-intermediate/language_model/data_utils.py
Normal file
@ -0,0 +1,46 @@
|
||||
import torch
|
||||
import os
|
||||
|
||||
|
||||
class Dictionary(object):
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if not word in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
|
||||
class Corpus(object):
|
||||
def __init__(self):
|
||||
self.dictionary = Dictionary()
|
||||
|
||||
def get_data(self, path, batch_size=20):
|
||||
# Add words to the dictionary
|
||||
with open(path, 'r') as f:
|
||||
tokens = 0
|
||||
for line in f:
|
||||
words = line.split() + ['<eos>']
|
||||
tokens += len(words)
|
||||
for word in words:
|
||||
self.dictionary.add_word(word)
|
||||
|
||||
# Tokenize the file content
|
||||
ids = torch.LongTensor(tokens)
|
||||
token = 0
|
||||
with open(path, 'r') as f:
|
||||
for line in f:
|
||||
words = line.split() + ['<eos>']
|
||||
for word in words:
|
||||
ids[token] = self.dictionary.word2idx[word]
|
||||
token += 1
|
||||
num_batches = ids.size(0) // batch_size
|
||||
ids = ids[:num_batches*batch_size]
|
||||
return ids.view(batch_size, -1)
|
120
tutorials/02-intermediate/language_model/main.py
Normal file
120
tutorials/02-intermediate/language_model/main.py
Normal file
@ -0,0 +1,120 @@
|
||||
# Some part of the code was referenced from below.
|
||||
# https://github.com/pytorch/examples/tree/master/word_language_model
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from torch.nn.utils import clip_grad_norm
|
||||
from data_utils import Dictionary, Corpus
|
||||
|
||||
|
||||
# Device configuration
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
# Hyper-parameters
|
||||
embed_size = 128
|
||||
hidden_size = 1024
|
||||
num_layers = 1
|
||||
num_epochs = 5
|
||||
num_samples = 1000 # number of words to be sampled
|
||||
batch_size = 20
|
||||
seq_length = 30
|
||||
learning_rate = 0.002
|
||||
|
||||
# Load "Penn Treebank" dataset
|
||||
corpus = Corpus()
|
||||
ids = corpus.get_data('data/train.txt', batch_size)
|
||||
vocab_size = len(corpus.dictionary)
|
||||
num_batches = ids.size(1) // seq_length
|
||||
|
||||
|
||||
# RNN based language model
|
||||
class RNNLM(nn.Module):
|
||||
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
|
||||
super(RNNLM, self).__init__()
|
||||
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
|
||||
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||
|
||||
def forward(self, x, h):
|
||||
# Embed word ids to vectors
|
||||
x = self.embed(x)
|
||||
|
||||
# Forward propagate LSTM
|
||||
out, (h, c) = self.lstm(x, h)
|
||||
|
||||
# Reshape output to (batch_size*sequence_length, hidden_size)
|
||||
out = out.reshape(out.size(0)*out.size(1), out.size(2))
|
||||
|
||||
# Decode hidden states of all time steps
|
||||
out = self.linear(out)
|
||||
return out, (h, c)
|
||||
|
||||
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Truncated backpropagation
|
||||
def detach(states):
|
||||
return [state.detach() for state in states]
|
||||
|
||||
# Train the model
|
||||
for epoch in range(num_epochs):
|
||||
# Set initial hidden and cell states
|
||||
states = (torch.zeros(num_layers, batch_size, hidden_size).to(device),
|
||||
torch.zeros(num_layers, batch_size, hidden_size).to(device))
|
||||
|
||||
for i in range(0, ids.size(1) - seq_length, seq_length):
|
||||
# Get mini-batch inputs and targets
|
||||
inputs = ids[:, i:i+seq_length].to(device)
|
||||
targets = ids[:, (i+1):(i+1)+seq_length].to(device)
|
||||
|
||||
# Forward pass
|
||||
states = detach(states)
|
||||
outputs, states = model(inputs, states)
|
||||
loss = criterion(outputs, targets.reshape(-1))
|
||||
|
||||
# Backward and optimize
|
||||
model.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm(model.parameters(), 0.5)
|
||||
optimizer.step()
|
||||
|
||||
step = (i+1) // seq_length
|
||||
if step % 100 == 0:
|
||||
print ('Epoch [{}/{}], Step[{}/{}], Loss: {:.4f}, Perplexity: {:5.2f}'
|
||||
.format(epoch+1, num_epochs, step, num_batches, loss.item(), np.exp(loss.item())))
|
||||
|
||||
# Test the model
|
||||
with torch.no_grad():
|
||||
with open('sample.txt', 'w') as f:
|
||||
# Set intial hidden ane cell states
|
||||
state = (torch.zeros(num_layers, 1, hidden_size).to(device),
|
||||
torch.zeros(num_layers, 1, hidden_size).to(device))
|
||||
|
||||
# Select one word id randomly
|
||||
prob = torch.ones(vocab_size)
|
||||
input = torch.multinomial(prob, num_samples=1).unsqueeze(1).to(device)
|
||||
|
||||
for i in range(num_samples):
|
||||
# Forward propagate RNN
|
||||
output, state = model(input, state)
|
||||
|
||||
# Sample a word id
|
||||
prob = output.exp()
|
||||
word_id = torch.multinomial(prob, num_samples=1).item()
|
||||
|
||||
# Fill input with sampled word id for the next time step
|
||||
input.fill_(word_id)
|
||||
|
||||
# File write
|
||||
word = corpus.dictionary.idx2word[word_id]
|
||||
word = '\n' if word == '<eos>' else word + ' '
|
||||
f.write(word)
|
||||
|
||||
if (i+1) % 100 == 0:
|
||||
print('Sampled [{}/{}] words and save to {}'.format(i+1, num_samples, 'sample.txt'))
|
||||
|
||||
# Save the model checkpoints
|
||||
torch.save(model.state_dict(), 'model.ckpt')
|
Reference in New Issue
Block a user