mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-19 21:31:37 +08:00
Update tutorials for pytorch 0.4.0
This commit is contained in:
189
tutorials/01-basics/pytorch_basics/main.py
Normal file
189
tutorials/01-basics/pytorch_basics/main.py
Normal file
@ -0,0 +1,189 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# Table of Contents #
|
||||
# ================================================================== #
|
||||
|
||||
# 1. Basic autograd example 1 (Line 25 to 39)
|
||||
# 2. Basic autograd example 2 (Line 46 to 83)
|
||||
# 3. Loading data from numpy (Line 90 to 97)
|
||||
# 4. Input pipline (Line 104 to 129)
|
||||
# 5. Input pipline for custom dataset (Line 136 to 156)
|
||||
# 6. Pretrained model (Line 163 to 176)
|
||||
# 7. Save and load model (Line 183 to 189)
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 1. Basic autograd example 1 #
|
||||
# ================================================================== #
|
||||
|
||||
# Create tensors.
|
||||
x = torch.tensor(1, requires_grad=True)
|
||||
w = torch.tensor(2, requires_grad=True)
|
||||
b = torch.tensor(3, requires_grad=True)
|
||||
|
||||
# Build a computational graph.
|
||||
y = w * x + b # y = 2 * x + 3
|
||||
|
||||
# Compute gradients.
|
||||
y.backward()
|
||||
|
||||
# Print out the gradients.
|
||||
print(x.grad) # x.grad = 2
|
||||
print(w.grad) # w.grad = 1
|
||||
print(b.grad) # b.grad = 1
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 2. Basic autograd example 2 #
|
||||
# ================================================================== #
|
||||
|
||||
# Create tensors of shape (10, 3) and (10, 2).
|
||||
x = torch.randn(10, 3)
|
||||
y = torch.randn(10, 2)
|
||||
|
||||
# Build a fully connected layer.
|
||||
linear = nn.Linear(3, 2)
|
||||
print ('w: ', linear.weight)
|
||||
print ('b: ', linear.bias)
|
||||
|
||||
# Build loss function and optimizer.
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)
|
||||
|
||||
# Forward pass.
|
||||
pred = linear(x)
|
||||
|
||||
# Compute loss.
|
||||
loss = criterion(pred, y)
|
||||
print('loss: ', loss.item())
|
||||
|
||||
# Backward pass.
|
||||
loss.backward()
|
||||
|
||||
# Print out the gradients.
|
||||
print ('dL/dw: ', linear.weight.grad)
|
||||
print ('dL/db: ', linear.bias.grad)
|
||||
|
||||
# 1-step gradient descent.
|
||||
optimizer.step()
|
||||
|
||||
# You can also perform gradient descent at the low level.
|
||||
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
|
||||
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)
|
||||
|
||||
# Print out the loss after 1-step gradient descent.
|
||||
pred = linear(x)
|
||||
loss = criterion(pred, y)
|
||||
print('loss after 1 step optimization: ', loss.item())
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 3. Loading data from numpy #
|
||||
# ================================================================== #
|
||||
|
||||
# Create a numpy array.
|
||||
x = np.array([[1, 2], [3, 4]])
|
||||
|
||||
# Convert the numpy array to a torch tensor.
|
||||
y = torch.from_numpy(x)
|
||||
|
||||
# Convert the torch tensor to a numpy array.
|
||||
z = y.numpy()
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 4. Input pipline #
|
||||
# ================================================================== #
|
||||
|
||||
# Download and construct CIFAR-10 dataset.
|
||||
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
|
||||
train=True,
|
||||
transform=transforms.ToTensor(),
|
||||
download=True)
|
||||
|
||||
# Fetch one data pair (read data from disk).
|
||||
image, label = train_dataset[0]
|
||||
print (image.size())
|
||||
print (label)
|
||||
|
||||
# Data loader (this provides queues and threads in a very simple way).
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=64,
|
||||
shuffle=True)
|
||||
|
||||
# When iteration starts, queue and thread start to load data from files.
|
||||
data_iter = iter(train_loader)
|
||||
|
||||
# Mini-batch images and labels.
|
||||
images, labels = data_iter.next()
|
||||
|
||||
# Actual usage of the data loader is as below.
|
||||
for images, labels in train_loader:
|
||||
# Training code should be written here.
|
||||
pass
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 5. Input pipline for custom dataset #
|
||||
# ================================================================== #
|
||||
|
||||
# You should your build your custom dataset as below.
|
||||
class CustomDataset(torch.utils.data.Dataset):
|
||||
def __init__(self):
|
||||
# TODO
|
||||
# 1. Initialize file paths or a list of file names.
|
||||
pass
|
||||
def __getitem__(self, index):
|
||||
# TODO
|
||||
# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
|
||||
# 2. Preprocess the data (e.g. torchvision.Transform).
|
||||
# 3. Return a data pair (e.g. image and label).
|
||||
pass
|
||||
def __len__(self):
|
||||
# You should change 0 to the total size of your dataset.
|
||||
return 0
|
||||
|
||||
# You can then use the prebuilt data loader.
|
||||
custom_dataset = CustomDataset()
|
||||
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
|
||||
batch_size=64,
|
||||
shuffle=True)
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 6. Pretrained model #
|
||||
# ================================================================== #
|
||||
|
||||
# Download and load the pretrained ResNet-18.
|
||||
resnet = torchvision.models.resnet18(pretrained=True)
|
||||
|
||||
# If you want to finetune only the top layer of the model, set as below.
|
||||
for param in resnet.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Replace the top layer for finetuning.
|
||||
resnet.fc = nn.Linear(resnet.fc.in_features, 100) # 100 is an example.
|
||||
|
||||
# Forward pass.
|
||||
images = torch.randn(64, 3, 224, 224)
|
||||
outputs = resnet(images)
|
||||
print (outputs.size()) # (64, 100)
|
||||
|
||||
|
||||
# ================================================================== #
|
||||
# 7. Save and load the model #
|
||||
# ================================================================== #
|
||||
|
||||
# Save and load the entire model.
|
||||
torch.save(resnet, 'model.ckpt')
|
||||
model = torch.load('model.ckpt')
|
||||
|
||||
# Save and load only the model parameters (recommended).
|
||||
torch.save(resnet.state_dict(), 'params.ckpt')
|
||||
resnet.load_state_dict(torch.load('params.ckpt'))
|
Reference in New Issue
Block a user