mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-07 18:14:17 +08:00
fixed typo
This commit is contained in:
@ -37,7 +37,7 @@ class VAE(nn.Module):
|
|||||||
nn.Linear(h_dim, image_size),
|
nn.Linear(h_dim, image_size),
|
||||||
nn.Sigmoid())
|
nn.Sigmoid())
|
||||||
|
|
||||||
def reparametrize(self, mu, log_var):
|
def reparameterize(self, mu, log_var):
|
||||||
""""z = mean + eps * sigma where eps is sampled from N(0, 1)."""
|
""""z = mean + eps * sigma where eps is sampled from N(0, 1)."""
|
||||||
eps = to_var(torch.randn(mu.size(0), mu.size(1)))
|
eps = to_var(torch.randn(mu.size(0), mu.size(1)))
|
||||||
z = mu + eps * torch.exp(log_var/2) # 2 for convert var to std
|
z = mu + eps * torch.exp(log_var/2) # 2 for convert var to std
|
||||||
@ -46,7 +46,7 @@ class VAE(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
h = self.encoder(x)
|
h = self.encoder(x)
|
||||||
mu, log_var = torch.chunk(h, 2, dim=1) # mean and log variance.
|
mu, log_var = torch.chunk(h, 2, dim=1) # mean and log variance.
|
||||||
z = self.reparametrize(mu, log_var)
|
z = self.reparameterize(mu, log_var)
|
||||||
out = self.decoder(z)
|
out = self.decoder(z)
|
||||||
return out, mu, log_var
|
return out, mu, log_var
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user