captioning modules are edited

This commit is contained in:
yunjey
2017-03-21 01:05:47 +09:00
parent 247de2da86
commit 4fc2b1fa8a
5 changed files with 128 additions and 109 deletions

View File

@ -13,12 +13,13 @@ from pycocotools.coco import COCO
class CocoDataset(data.Dataset):
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
def __init__(self, root, json, vocab, transform=None):
"""
"""Set the path for images, captions and vocabulary wrapper.
Args:
root: image directory.
json: coco annotation file path.
vocab: vocabulary wrapper.
transform: transformer for image.
transform: image transformer
"""
self.root = root
self.coco = COCO(json)
@ -27,7 +28,7 @@ class CocoDataset(data.Dataset):
self.transform = transform
def __getitem__(self, index):
"""This function should return one data pair(image and caption)."""
"""Returns one data pair (image and caption)."""
coco = self.coco
vocab = self.vocab
ann_id = self.ids[index]
@ -53,12 +54,13 @@ class CocoDataset(data.Dataset):
def collate_fn(data):
"""Build mini-batch tensors from a list of (image, caption) tuples.
"""Creates mini-batch tensors from the list of tuples (image, caption).
Args:
data: list of (image, caption) tuple.
data: list of tuple (image, caption).
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
@ -68,10 +70,10 @@ def collate_fn(data):
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
# Merge images (from tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
# Merge captions (from tuple of 1D tensor to 2D tensor)
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
@ -80,18 +82,18 @@ def collate_fn(data):
return images, targets, lengths
def get_loader(root, json, vocab, transform, batch_size=100, shuffle=True, num_workers=2):
def get_data_loader(root, json, vocab, transform, batch_size, shuffle, num_workers):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
# COCO custom dataset
# COCO dataset
coco = CocoDataset(root=root,
json=json,
vocab = vocab,
transform=transform)
# Data loader
# Data loader for COCO dataset
data_loader = torch.utils.data.DataLoader(dataset=coco,
batch_size=batch_size,
shuffle=True,
shuffle=shuffle,
num_workers=num_workers,
collate_fn=collate_fn)
return data_loader

View File

@ -7,43 +7,44 @@ from torch.autograd import Variable
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load pretrained ResNet-152 and replace top fc layer."""
"""Loads the pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet152(pretrained=True)
# For efficient memory usage.
for param in self.resnet.parameters():
param.requires_grad = False
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)
self.init_weights()
def init_weights(self):
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
"""Initialize weights."""
self.resnet.fc.weight.data.normal_(0.0, 0.02)
self.resnet.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
"""Extracts the image feature vectors."""
features = self.resnet(images)
features = self.bn(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
"""Set hyper-parameters and build layers."""
"""Set the hyper-parameters and build the layers."""
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.init_weights()
def init_weights(self):
"""Initialize weights."""
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weigth.data.uniform_(-0.1, 0.1)
self.linear.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generate caption."""
"""Decodes image feature vectors and generates captions."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
@ -51,14 +52,15 @@ class DecoderRNN(nn.Module):
outputs = self.linear(hiddens[0])
return outputs
def sample(self, feature, state):
"""Sample a caption for given a image feature."""
def sample(self, features, states):
"""Samples captions for given image features."""
sampled_ids = []
input = feature.unsqueeze(1)
inputs = features.unsqueeze(1)
for i in range(20):
hidden, state = self.lstm(input, state) # (1, 1, hidden_size)
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size)
predicted = output.max(1)[1]
hiddens, states = self.lstm(inputs, states) # (batch_size, 1, hidden_size)
outputs = self.linear(hiddens.unsqueeze()) # (batch_size, vocab_size)
predicted = outputs.max(1)[1]
sampled_ids.append(predicted)
input = self.embed(predicted)
inputs = self.embed(predicted)
sampled_ids = torch.cat(sampled_ids, 1) # (batch_size, 20)
return sampled_ids

View File

@ -1,34 +1,34 @@
from PIL import Image
from configuration import Config
import os
def resize_image(image, size):
"""Resizes an image to the given size."""
"""Resizes the image to the given size."""
return image.resize(size, Image.ANTIALIAS)
def resize_images(image_dir, output_dir, size):
"""Resizes the images in the image_dir and save into the output_dir."""
"""Resizes the images in 'image_dir' and save them in 'output_dir'."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
images = os.listdir(image_dir)
num_images = len(images)
for i, image in enumerate(images):
with open(os.path.join(image_dir, image), 'r+b') as f:
with Image.open(f) as img:
img = resize_image(img, size)
img.save(
os.path.join(output_dir, image), img.format)
img.save(os.path.join(output_dir, image), img.format)
if i % 100 == 0:
print ('[%d/%d] Resized the images and saved into %s.'
print ('[%d/%d] Resized the images and saved them in %s.'
%(i, num_images, output_dir))
def main():
config = Config()
splits = ['train', 'val']
for split in splits:
image_dir = './data/%s2014/' %split
output_dir = './data/%s2014resized' %split
resize_images(image_dir, output_dir, (256, 256))
image_dir = os.path.join(config.image_path, '%s2014/' %split)
output_dir = os.path.join(config.image_path, '%s2014resized' %split)
resize_images(image_dir, output_dir, (config.image_size, config.image_size))
if __name__ == '__main__':

View File

@ -1,72 +1,84 @@
from data import get_loader
from data import get_data_loader
from vocab import Vocabulary
from configuration import Config
from model import EncoderCNN, DecoderRNN
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
import torch
import torch.nn as nn
import numpy as np
import torch.nn as nn
import torchvision.transforms as T
import numpy as np
import pickle
import os
# Hyper Parameters
num_epochs = 1
batch_size = 32
embed_size = 256
hidden_size = 512
crop_size = 224
num_layers = 1
learning_rate = 0.001
train_image_path = './data/train2014resized/'
train_json_path = './data/annotations/captions_train2014.json'
# Image Preprocessing
transform = T.Compose([
T.RandomCrop(crop_size),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
def main():
# Configuration for hyper-parameters
config = Config()
# Image preprocessing
transform = T.Compose([
T.Scale(config.image_size), # no resize
T.RandomCrop(config.crop_size),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# Load Vocabulary Wrapper
with open('./data/vocab.pkl', 'rb') as f:
# Load vocabulary wrapper
with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f:
vocab = pickle.load(f)
# Build Dataset Loader
train_loader = get_loader(train_image_path, train_json_path, vocab, transform,
batch_size=batch_size, shuffle=True, num_workers=2)
total_step = len(train_loader)
# Build Models
encoder = EncoderCNN(embed_size)
decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers)
encoder.cuda()
decoder.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
optimizer = torch.optim.Adam(params, lr=learning_rate)
# Build data loader
image_path = os.path.join(config.image_path, 'train2014')
json_path = os.path.join(config.caption_path, 'captions_train2014.json')
train_loader = get_data_loader(image_path, json_path, vocab,
transform, config.batch_size,
shuffle=True, num_workers=config.num_threads)
total_step = len(train_loader)
# Train the Decoder
for epoch in range(num_epochs):
for i, (images, captions, lengths) in enumerate(train_loader):
# Set mini-batch dataset
images = Variable(images).cuda()
captions = Variable(captions).cuda()
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
# Forward, Backward and Optimize
decoder.zero_grad()
features = encoder(images)
outputs = decoder(features, captions, lengths)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if i % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
# Build Models
encoder = EncoderCNN(config.embed_size)
decoder = DecoderRNN(config.embed_size, config.hidden_size,
len(vocab), config.num_layers)
encoder.cuda()
decoder.cuda()
# Save the Model
torch.save(decoder, 'decoder.pkl')
torch.save(encoder, 'encoder.pkl')
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
optimizer = torch.optim.Adam(params, lr=config.learning_rate)
# Train the Models
for epoch in range(config.num_epochs):
for i, (images, captions, lengths) in enumerate(train_loader):
# Set mini-batch dataset
images = Variable(images).cuda()
captions = Variable(captions).cuda()
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
# Forward, Backward and Optimize
decoder.zero_grad()
encoder.zero_grad()
features = encoder(images)
outputs = decoder(features, captions, lengths)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Print log info
if i % config.log_step == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch, config.num_epochs, i, total_step,
loss.data[0], np.exp(loss.data[0])))
# Save the Model
if (i+1) % config.save_step == 0:
torch.save(decoder.state_dict(),
os.path.join(config.model_path,
'decoder-%d-%d.pkl' %(epoch+1, i+1)))
torch.save(encoder.state_dict(),
os.path.join(config.model_path,
'encoder-%d-%d.pkl' %(epoch+1, i+1)))
if __name__ == '__main__':
main()

View File

@ -1,6 +1,7 @@
# Create a vocabulary wrapper
import nltk
import pickle
import os
from configuration import Config
from collections import Counter
from pycocotools.coco import COCO
@ -27,7 +28,7 @@ class Vocabulary(object):
return len(self.word2idx)
def build_vocab(json, threshold):
"""Build a simple vocabulary wrapper."""
"""Builds a simple vocabulary wrapper."""
coco = COCO(json)
counter = Counter()
ids = coco.anns.keys()
@ -37,29 +38,31 @@ def build_vocab(json, threshold):
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] tokenized the captions." %(i, len(ids)))
# Discard if the occurrence of the word is less than min_word_cnt.
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
# If the word frequency is less than 'threshold', then the word is discarded.
words = [word for word, cnt in counter.items() if cnt >= threshold]
# Create a vocab wrapper and add some special tokens.
# Creates a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
# Add words to the vocabulary.
# Adds the words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
return vocab
def main():
vocab = build_vocab(json='./data/annotations/captions_train2014.json',
threshold=4)
with open('./data/vocab.pkl', 'wb') as f:
config = Config()
vocab = build_vocab(json=os.path.join(config.caption_path, 'captions_train2014.json'),
threshold=config.word_count_threshold)
vocab_path = os.path.join(config.vocab_path, 'vocab.pkl')
with open(vocab_path, 'wb') as f:
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
print("Saved vocabulary file to ", './data/vocab.pkl')
print("Saved the vocabulary wrapper to ", vocab_path)
if __name__ == '__main__':
main()