mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-27 20:13:33 +08:00
captioning modules are edited
This commit is contained in:
@ -13,12 +13,13 @@ from pycocotools.coco import COCO
|
||||
class CocoDataset(data.Dataset):
|
||||
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
|
||||
def __init__(self, root, json, vocab, transform=None):
|
||||
"""
|
||||
"""Set the path for images, captions and vocabulary wrapper.
|
||||
|
||||
Args:
|
||||
root: image directory.
|
||||
json: coco annotation file path.
|
||||
vocab: vocabulary wrapper.
|
||||
transform: transformer for image.
|
||||
transform: image transformer
|
||||
"""
|
||||
self.root = root
|
||||
self.coco = COCO(json)
|
||||
@ -27,7 +28,7 @@ class CocoDataset(data.Dataset):
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""This function should return one data pair(image and caption)."""
|
||||
"""Returns one data pair (image and caption)."""
|
||||
coco = self.coco
|
||||
vocab = self.vocab
|
||||
ann_id = self.ids[index]
|
||||
@ -53,9 +54,10 @@ class CocoDataset(data.Dataset):
|
||||
|
||||
|
||||
def collate_fn(data):
|
||||
"""Build mini-batch tensors from a list of (image, caption) tuples.
|
||||
"""Creates mini-batch tensors from the list of tuples (image, caption).
|
||||
|
||||
Args:
|
||||
data: list of (image, caption) tuple.
|
||||
data: list of tuple (image, caption).
|
||||
- image: torch tensor of shape (3, 256, 256).
|
||||
- caption: torch tensor of shape (?); variable length.
|
||||
|
||||
@ -68,10 +70,10 @@ def collate_fn(data):
|
||||
data.sort(key=lambda x: len(x[1]), reverse=True)
|
||||
images, captions = zip(*data)
|
||||
|
||||
# Merge images (convert tuple of 3D tensor to 4D tensor)
|
||||
# Merge images (from tuple of 3D tensor to 4D tensor)
|
||||
images = torch.stack(images, 0)
|
||||
|
||||
# Merget captions (convert tuple of 1D tensor to 2D tensor)
|
||||
# Merge captions (from tuple of 1D tensor to 2D tensor)
|
||||
lengths = [len(cap) for cap in captions]
|
||||
targets = torch.zeros(len(captions), max(lengths)).long()
|
||||
for i, cap in enumerate(captions):
|
||||
@ -80,18 +82,18 @@ def collate_fn(data):
|
||||
return images, targets, lengths
|
||||
|
||||
|
||||
def get_loader(root, json, vocab, transform, batch_size=100, shuffle=True, num_workers=2):
|
||||
def get_data_loader(root, json, vocab, transform, batch_size, shuffle, num_workers):
|
||||
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
||||
# COCO custom dataset
|
||||
# COCO dataset
|
||||
coco = CocoDataset(root=root,
|
||||
json=json,
|
||||
vocab = vocab,
|
||||
transform=transform)
|
||||
|
||||
# Data loader
|
||||
# Data loader for COCO dataset
|
||||
data_loader = torch.utils.data.DataLoader(dataset=coco,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
shuffle=shuffle,
|
||||
num_workers=num_workers,
|
||||
collate_fn=collate_fn)
|
||||
return data_loader
|
@ -7,43 +7,44 @@ from torch.autograd import Variable
|
||||
|
||||
class EncoderCNN(nn.Module):
|
||||
def __init__(self, embed_size):
|
||||
"""Load pretrained ResNet-152 and replace top fc layer."""
|
||||
"""Loads the pretrained ResNet-152 and replace top fc layer."""
|
||||
super(EncoderCNN, self).__init__()
|
||||
self.resnet = models.resnet152(pretrained=True)
|
||||
# For efficient memory usage.
|
||||
for param in self.resnet.parameters():
|
||||
param.requires_grad = False
|
||||
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
|
||||
self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
|
||||
"""Initialize weights."""
|
||||
self.resnet.fc.weight.data.normal_(0.0, 0.02)
|
||||
self.resnet.fc.bias.data.fill_(0)
|
||||
|
||||
def forward(self, images):
|
||||
"""Extract image feature vectors."""
|
||||
"""Extracts the image feature vectors."""
|
||||
features = self.resnet(images)
|
||||
features = self.bn(features)
|
||||
return features
|
||||
|
||||
|
||||
class DecoderRNN(nn.Module):
|
||||
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
|
||||
"""Set hyper-parameters and build layers."""
|
||||
"""Set the hyper-parameters and build the layers."""
|
||||
super(DecoderRNN, self).__init__()
|
||||
self.embed_size = embed_size
|
||||
self.hidden_size = hidden_size
|
||||
self.vocab_size = vocab_size
|
||||
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
|
||||
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
|
||||
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
"""Initialize weights."""
|
||||
self.embed.weight.data.uniform_(-0.1, 0.1)
|
||||
self.linear.weigth.data.uniform_(-0.1, 0.1)
|
||||
self.linear.weight.data.uniform_(-0.1, 0.1)
|
||||
self.linear.bias.data.fill_(0)
|
||||
|
||||
def forward(self, features, captions, lengths):
|
||||
"""Decode image feature vectors and generate caption."""
|
||||
"""Decodes image feature vectors and generates captions."""
|
||||
embeddings = self.embed(captions)
|
||||
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
|
||||
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
|
||||
@ -51,14 +52,15 @@ class DecoderRNN(nn.Module):
|
||||
outputs = self.linear(hiddens[0])
|
||||
return outputs
|
||||
|
||||
def sample(self, feature, state):
|
||||
"""Sample a caption for given a image feature."""
|
||||
def sample(self, features, states):
|
||||
"""Samples captions for given image features."""
|
||||
sampled_ids = []
|
||||
input = feature.unsqueeze(1)
|
||||
inputs = features.unsqueeze(1)
|
||||
for i in range(20):
|
||||
hidden, state = self.lstm(input, state) # (1, 1, hidden_size)
|
||||
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size)
|
||||
predicted = output.max(1)[1]
|
||||
hiddens, states = self.lstm(inputs, states) # (batch_size, 1, hidden_size)
|
||||
outputs = self.linear(hiddens.unsqueeze()) # (batch_size, vocab_size)
|
||||
predicted = outputs.max(1)[1]
|
||||
sampled_ids.append(predicted)
|
||||
input = self.embed(predicted)
|
||||
inputs = self.embed(predicted)
|
||||
sampled_ids = torch.cat(sampled_ids, 1) # (batch_size, 20)
|
||||
return sampled_ids
|
@ -1,34 +1,34 @@
|
||||
from PIL import Image
|
||||
from configuration import Config
|
||||
import os
|
||||
|
||||
|
||||
def resize_image(image, size):
|
||||
"""Resizes an image to the given size."""
|
||||
"""Resizes the image to the given size."""
|
||||
return image.resize(size, Image.ANTIALIAS)
|
||||
|
||||
def resize_images(image_dir, output_dir, size):
|
||||
"""Resizes the images in the image_dir and save into the output_dir."""
|
||||
"""Resizes the images in 'image_dir' and save them in 'output_dir'."""
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
images = os.listdir(image_dir)
|
||||
num_images = len(images)
|
||||
for i, image in enumerate(images):
|
||||
with open(os.path.join(image_dir, image), 'r+b') as f:
|
||||
with Image.open(f) as img:
|
||||
img = resize_image(img, size)
|
||||
img.save(
|
||||
os.path.join(output_dir, image), img.format)
|
||||
img.save(os.path.join(output_dir, image), img.format)
|
||||
if i % 100 == 0:
|
||||
print ('[%d/%d] Resized the images and saved into %s.'
|
||||
print ('[%d/%d] Resized the images and saved them in %s.'
|
||||
%(i, num_images, output_dir))
|
||||
|
||||
def main():
|
||||
config = Config()
|
||||
splits = ['train', 'val']
|
||||
for split in splits:
|
||||
image_dir = './data/%s2014/' %split
|
||||
output_dir = './data/%s2014resized' %split
|
||||
resize_images(image_dir, output_dir, (256, 256))
|
||||
image_dir = os.path.join(config.image_path, '%s2014/' %split)
|
||||
output_dir = os.path.join(config.image_path, '%s2014resized' %split)
|
||||
resize_images(image_dir, output_dir, (config.image_size, config.image_size))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,55 +1,57 @@
|
||||
from data import get_loader
|
||||
from data import get_data_loader
|
||||
from vocab import Vocabulary
|
||||
from configuration import Config
|
||||
from model import EncoderCNN, DecoderRNN
|
||||
from torch.autograd import Variable
|
||||
from torch.nn.utils.rnn import pack_padded_sequence
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torchvision.transforms as T
|
||||
import numpy as np
|
||||
import pickle
|
||||
import os
|
||||
|
||||
# Hyper Parameters
|
||||
num_epochs = 1
|
||||
batch_size = 32
|
||||
embed_size = 256
|
||||
hidden_size = 512
|
||||
crop_size = 224
|
||||
num_layers = 1
|
||||
learning_rate = 0.001
|
||||
train_image_path = './data/train2014resized/'
|
||||
train_json_path = './data/annotations/captions_train2014.json'
|
||||
|
||||
# Image Preprocessing
|
||||
transform = T.Compose([
|
||||
T.RandomCrop(crop_size),
|
||||
def main():
|
||||
# Configuration for hyper-parameters
|
||||
config = Config()
|
||||
|
||||
# Image preprocessing
|
||||
transform = T.Compose([
|
||||
T.Scale(config.image_size), # no resize
|
||||
T.RandomCrop(config.crop_size),
|
||||
T.RandomHorizontalFlip(),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
||||
|
||||
# Load Vocabulary Wrapper
|
||||
with open('./data/vocab.pkl', 'rb') as f:
|
||||
# Load vocabulary wrapper
|
||||
with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f:
|
||||
vocab = pickle.load(f)
|
||||
|
||||
# Build Dataset Loader
|
||||
train_loader = get_loader(train_image_path, train_json_path, vocab, transform,
|
||||
batch_size=batch_size, shuffle=True, num_workers=2)
|
||||
total_step = len(train_loader)
|
||||
# Build data loader
|
||||
image_path = os.path.join(config.image_path, 'train2014')
|
||||
json_path = os.path.join(config.caption_path, 'captions_train2014.json')
|
||||
train_loader = get_data_loader(image_path, json_path, vocab,
|
||||
transform, config.batch_size,
|
||||
shuffle=True, num_workers=config.num_threads)
|
||||
total_step = len(train_loader)
|
||||
|
||||
# Build Models
|
||||
encoder = EncoderCNN(embed_size)
|
||||
decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers)
|
||||
encoder.cuda()
|
||||
decoder.cuda()
|
||||
# Build Models
|
||||
encoder = EncoderCNN(config.embed_size)
|
||||
decoder = DecoderRNN(config.embed_size, config.hidden_size,
|
||||
len(vocab), config.num_layers)
|
||||
encoder.cuda()
|
||||
decoder.cuda()
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
|
||||
optimizer = torch.optim.Adam(params, lr=learning_rate)
|
||||
# Loss and Optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
|
||||
optimizer = torch.optim.Adam(params, lr=config.learning_rate)
|
||||
|
||||
# Train the Decoder
|
||||
for epoch in range(num_epochs):
|
||||
# Train the Models
|
||||
for epoch in range(config.num_epochs):
|
||||
for i, (images, captions, lengths) in enumerate(train_loader):
|
||||
|
||||
# Set mini-batch dataset
|
||||
images = Variable(images).cuda()
|
||||
captions = Variable(captions).cuda()
|
||||
@ -57,16 +59,26 @@ for epoch in range(num_epochs):
|
||||
|
||||
# Forward, Backward and Optimize
|
||||
decoder.zero_grad()
|
||||
encoder.zero_grad()
|
||||
features = encoder(images)
|
||||
outputs = decoder(features, captions, lengths)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if i % 100 == 0:
|
||||
# Print log info
|
||||
if i % config.log_step == 0:
|
||||
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
|
||||
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
|
||||
%(epoch, config.num_epochs, i, total_step,
|
||||
loss.data[0], np.exp(loss.data[0])))
|
||||
|
||||
# Save the Model
|
||||
torch.save(decoder, 'decoder.pkl')
|
||||
torch.save(encoder, 'encoder.pkl')
|
||||
# Save the Model
|
||||
if (i+1) % config.save_step == 0:
|
||||
torch.save(decoder.state_dict(),
|
||||
os.path.join(config.model_path,
|
||||
'decoder-%d-%d.pkl' %(epoch+1, i+1)))
|
||||
torch.save(encoder.state_dict(),
|
||||
os.path.join(config.model_path,
|
||||
'encoder-%d-%d.pkl' %(epoch+1, i+1)))
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,6 +1,7 @@
|
||||
# Create a vocabulary wrapper
|
||||
import nltk
|
||||
import pickle
|
||||
import os
|
||||
from configuration import Config
|
||||
from collections import Counter
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
@ -27,7 +28,7 @@ class Vocabulary(object):
|
||||
return len(self.word2idx)
|
||||
|
||||
def build_vocab(json, threshold):
|
||||
"""Build a simple vocabulary wrapper."""
|
||||
"""Builds a simple vocabulary wrapper."""
|
||||
coco = COCO(json)
|
||||
counter = Counter()
|
||||
ids = coco.anns.keys()
|
||||
@ -37,29 +38,31 @@ def build_vocab(json, threshold):
|
||||
counter.update(tokens)
|
||||
|
||||
if i % 1000 == 0:
|
||||
print("[%d/%d] tokenized the captions." %(i, len(ids)))
|
||||
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
|
||||
|
||||
# Discard if the occurrence of the word is less than min_word_cnt.
|
||||
# If the word frequency is less than 'threshold', then the word is discarded.
|
||||
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Create a vocab wrapper and add some special tokens.
|
||||
# Creates a vocab wrapper and add some special tokens.
|
||||
vocab = Vocabulary()
|
||||
vocab.add_word('<pad>')
|
||||
vocab.add_word('<start>')
|
||||
vocab.add_word('<end>')
|
||||
vocab.add_word('<unk>')
|
||||
|
||||
# Add words to the vocabulary.
|
||||
# Adds the words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
return vocab
|
||||
|
||||
def main():
|
||||
vocab = build_vocab(json='./data/annotations/captions_train2014.json',
|
||||
threshold=4)
|
||||
with open('./data/vocab.pkl', 'wb') as f:
|
||||
config = Config()
|
||||
vocab = build_vocab(json=os.path.join(config.caption_path, 'captions_train2014.json'),
|
||||
threshold=config.word_count_threshold)
|
||||
vocab_path = os.path.join(config.vocab_path, 'vocab.pkl')
|
||||
with open(vocab_path, 'wb') as f:
|
||||
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||
print("Saved vocabulary file to ", './data/vocab.pkl')
|
||||
print("Saved the vocabulary wrapper to ", vocab_path)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user